

Shizuku 2
(VRF System Emulator)

Reference Manual

2023/11/23

Table of contents

Section 1 Introduction.. 1
1.1 What is Shizuku2 ... 1
1.2 Thermal environment system to be emulated .. 1

1) Building ... 1
2) VRF system ... 4
3) Occupants .. 5

Section 2 Installing and running the emulator ... 6
2.1 Installing the emulator ... 6
2.2 Contents of the directory ... 7
2.3 Starting the emulator and testing BACnet communication ... 8
2.4 Running the emulator ... 11
2.5 Setting emulation parameters ... 12

Section 3 Controlling the emulator with a Microsoft Excel file .. 13
3.1 Software Description ... 13
3.2 Execution example ... 16

Section 4 Controlling the emulator using programs .. 18
4.1 Common language-independent information .. 18
4.2 Controller programs using Python ... 20

1) Time synchronization .. 20
2) Monitoring of indoor and outdoor environments ... 21
3) Monitoring of occupants’ information ... 23
4) Changing the operation of ventilation system ... 24
5) Changing the operation of the VRF system ... 25
6) Control according to schedule ... 27
7) CO2 level-based ventilation control .. 29

4.3 Controller programs using C# .. 32
1) Time synchronization .. 32
2) Monitoring of indoor and outdoor environments ... 33
3) Monitoring of occupant information .. 34
4) Changing the operation of the ventilation system .. 35
5) Changing the operation of the VRF system ... 36
6) Control according to schedule ... 37
7) CO2 level-based ventilation control .. 39

Section 5 Points to keep in mind when improving HVAC operations ... 41
5.1 Building-related notes .. 41
5.2 VRF system-related notes .. 41
5.3 Occupant related notes ... 42

-1-

Section 1 Introduction

1.1 What is Shizuku2

 Shizuku2 is a software that emulates the thermal environmental system of a building with a variable refrigerant

flow (VRF) system installed (hereafter, referred to as an "emulator").

 More buildings are installing VRF systems for air conditioning, and there is great value in correctly predicting

their performance. However, VRF systems are more difficult to predict than central heat-source systems because of

the greater interaction between the air-conditioning system and occupants. This is mainly because occupants can

directly control the remote controller to alter the indoor environment. Another factor that makes it difficult to predict

the performance is that the heat flow is difficult to measure accurately because of the direct heat exchange between

the refrigerant and air.

 Therefore, this emulator was developed to predict the effect of various VRF controls on energy consumption

and thermal comfort. The building, VRF system, and occupants are each modeled precisely to simulate reality and

correctly evaluate the tradeoffs between these two performances. Users of the emulator can attempt to control the

VRF as if it exists in reality using BACnet—a general-purpose communication method that is also used in real

buildings.

 This document provides a reference manual on how to use an emulator. The subsequent sections of this chapter

describe the building, VRFs, and occupants to be simulated. Section 2 discusses the installation of Shizuku2, its

directory structure, and a simple execution example. Section 3 explains how to control the VRF system in the

emulator using Microsoft Excel. Section 4 explains how to control the VRF using a different program. Section 5 lists

points to consider when optimizing VRF operations.

1.2 Thermal environment system to be emulated

1) Building

 The floor plan of the building to be simulated is shown in Fig. 1.1. Two offices face northwest and southwest.

Each office is occupied by a different tenant. Both have floor areas of 273 m2. There are no detailed partitions.

-2-

Fig. 1.1 Floor plan of the building

 A cross-sectional view of the exterior wall is shown in Fig. 1.2. The total window area is 15.96 m2 on the south

and north sides and 10.64 m2 on the west side.

Fig. 1.2 Cross-sectional view of the exterior wall

Machine
room

PS

DS

Office
tenant 1

Office
tenant 2

N S

Assume symmetrical shaped roomAssume symmetrical shaped room

4,000 5,000 5,000
14,000

6,
50

0
6,

50
0

6,
50

0

19
,5

00

4,0005,0005,000
14,000

1,
30

0
1,

30
0

1,
40

0

4,
00

0

28
5

7
50

150

2,
70

0

150
100

Office automation floor

Plaster board
Air gap
Polystyrene foam
Concrete
Mortar
Tile

8 mm
-

25 mm
150 mm

25 mm
10 mm

Rock wool acoustic board 15 mm

Concrete 150 mm

Single float glass

-3-

 We assume that the building would be constructed in Tokyo, Japan. The typical summer and winter weather data

for Tokyo are shown in Fig. 1.3.

Fig. 1.3 Typical summer and winter weather data for Tokyo

 The emulator simulates one week starting July 20 as the summer season and one week starting February 10 as

the winter season. Fig. 1.3 shows the results of generating 100 random weather data points for July 20 and February

10, the first day of each simulation period, and obtaining their statistics.

8

10

12

14

16

18

20

22

24

A
b

so
lu

te
 h

u
m

id
ity

 [g
/k

g
]

0

200

400

600

800

1000

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

-5

0

5

10

15

20

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

15

20

25

30

35

40

D
ry

b
u

lb
 te

m
p

e
ra

tu
re

 [C
]

G
lo

ba
l h

or
iz

on
ta

l r
ad

ia
tio

n
[W

/m
2]

Max.

Average Average

Max.

Summer Winter

(Max, 75 percentile, median, 25 percentile, Min.) (Max, 75 percentile, median, 25 percentile, Min.)

-4-

2) VRF system

 Four VRF systems exist: one for interior air conditioning and one for perimeter air conditioning in each of the

north and south office rooms. Fig. 1.4 shows the zones for each indoor-unit air condition. Each zone has a small total

heat exchanger for ventilation.

Fig. 1.4 Air-conditioning zone of the indoor unit

 Table 1.1 shows the specifications of the outdoor units. All models are two-pipe systems without heat recovery.

Table 1.2 and Table 1.3 show the specifications of the indoor units in each zone.

Table 1.1 Outdoor unit specifications

- VRF1 VRF2 VRF3 VRF4

Cooling capacity [kW] 40.0 22.4 33.5 22.4

Cooling electricity [kW] 12.5 6.07 9.74 6.07

Heating capacity [kW] 45.0 25.0 37.5 25.0

Heating electricity [kW] 13.1 6.32 10.0 6.32

Air flow rate [m3/min] 210 218 187 218

Electricity [kW] 0.58 0.52 0.42 0.52

Table 1.2 Indoor unit specifications

Indoor unit type C56 C71

Nominal cooling capacity [kW] 5.6 7.1

Nominal heating capacity [kW] 6.3 8.0

Air flow rate [m3/min] 15.5 22.0

Electricity [kW] 0.043 0.072

Machine
room

PS

DS

S1
26 m2

V1-1

Tenant 1Tenant 2

S2
26 m2

V1-2

S3
26 m2

V1-3

S4
32.5 m2

V1-4

S5
32.5 m2

V1-5

S6
32.5 m2

V2-1

S7
32.5 m2

V2-2

S8
32.5 m2

V2-3

S9
32.5 m2

V2-4

N1
26 m2

V3-1

N2
26 m2

V3-2

N3
26 m2

V3-3

N5
32.5 m2

V3-5

N4
32.5 m2

V3-4

N7
32.5 m2

V4-2

N6
32.5 m2

V4-1

N9
32.5 m2

V4-4

N8
32.5 m2

V4-3

N S

Assume symmetrical shaped roomAssume symmetrical shaped room

4,000 5,000 5,000
14,000

6,
50

0
6,

50
0

6,
50

0
19

,5
00

4,0005,0005,000
14,000

-5-

Table 1.3 Type of indoor units in each zone

Zone name N1 N2 N3 N4 N5 N6 N7 N8 N9

I/U name V3-1 V3-2 V3-3 V3-4 V3-5 V4-1 V4-2 V4-3 V4-4

I/U type C71 C56 C56 C71 C71 C56 C56 C56 C56

Zone name S1 S2 S3 S4 S5 S6 S7 S8 S9

I/U name V1-1 V1-2 V1-3 V1-4 V1-5 V2-1 V2-2 V2-3 V2-4

I/U type C71 C71 C71 C71 C71 C56 C56 C56 C56

3) Occupants

 There are approximately 80 occupants in the office, although the number varies depending on the random

seeding. Each occupant is modeled separately and has a different behavioral pattern and thermal preference. A list of

the occupants is presented in Appendix 2.

 Fig. 1.5 shows the number of office workers in a given week. The number of occupants in the office changes

daily because the manner in which each occupant enters and leaves the office is determined stochastically. Some

occupants work overtime and stay overnight, whereas others work on weekends.

Fig. 1.5 Change in the number of weekly office workers

 Office workers expressed probable dissatisfaction depending on the indoor environmental conditions. The four

conditions are as follows:

 1) Thermal environment is too hot or too cold.

 2) Cold air directly contacts the body

 3) Large temperature distribution in the vertical direction

 4) Insufficient ventilation and dirty air.

 These environmental conditions vary depending on the operation of the VRF.

0

10

20

30

40

50

60

0:
00

4:
00

8:
00

12
:0

0
16

:0
0

20
:0

0
0:

00
4:

00
8:

00
12

:0
0

16
:0

0
20

:0
0

0:
00

4:
00

8:
00

12
:0

0
16

:0
0

20
:0

0
0:

00
4:

00
8:

00
12

:0
0

16
:0

0
20

:0
0

0:
00

4:
00

8:
00

12
:0

0
16

:0
0

20
:0

0
0:

00
4:

00
8:

00
12

:0
0

16
:0

0
20

:0
0

0:
00

4:
00

8:
00

12
:0

0
16

:0
0

20
:0

0
0:

00

O
cc

up
an

t n
um

be
r

[-
]

-6-

Section 2 Installing and running the emulator

2.1 Installing the emulator

 Download the latest software compressed file (Shizuku2.zip) from the following web site.

https://github.com/et0614/shizuku/releases

 .NET 6.0, or higher, is required to execute the emulator. Download and install them from the following websites:

https://dotnet.microsoft.com/download

Download

-7-

2.2 Contents of the directory

 By unzipping the downloaded compressed file, you will see the directory shown in Fig. 2.1.

 Shizuku2
 ├─ Shizuku2.exe (1)
 ├─ setting.ini (2)
 ├─ data (Directory) (3)
 ├─ ExcelController.exe (4)
 ├─ schedule.xlsx (4a)
 ├─ schedule_samples.xlsx (4b)
 ├─ CaseStudyProcessor.exe (4c)
 ├─ schedules (Directory) (4d)
 ├─ DummyDeivceController.exe (5)
 ├─ Libraries (6)
 └─ Other files

Fig. 2.1 Shizuku2 directory

 “(1) Shizuku2.exe" is an executable emulator.

 "(2) setting.ini" is the initial configuration file for changing the behavior of the emulator.

 “(3) data" is the directory to which the results of the emulation are written.

 The VRF in the emulator is controlled externally using BACnet communication. The easiest method is to use

"(4) ExcelController.exe,” which reads the HVAC operation schedule entered in a Microsoft Excel file and controls

the VRF while keeping it synchronized with the emulator. 4a–d show the related files and directories, respectively.

The details are explained in Section 3.

 “(5) DummyDeviceController.exe" is a sample program for testing BACnet communication using a dummy

BACnet Device prepared in an emulator, which is described in the next section.

 “(6) Libraries" is a directory containing program libraries used to communicate with the emulator in the python

or C# languages.

-8-

2.3 Starting the emulator and testing BACnet communication

 When Shizuku2.exe is executed, the startup screen shown in Fig. 2.2 appears.

 The emulator contains models of the VRF and ventilation equipment, but they stop when the emulator starts up

and will not move unless a startup signal is sent from the outside via BACnet communication. This equipment, which

is controlled by BACnet communication, is called a BACnet controller.

 To allow time for the BACnet controller outside the emulator to connect to the internal controller, the emulator

enters an idle state once it starts and completes its preparatory calculations. Fig. 2.2 shows this state. Entering the

"Enter" key on the keyboard brings the program out of its idle state and starts the calculation.

Fig. 2.2 Emulator startup screen

 The emulator can respond to BACnet communication even in the idling state, as shown in Fig. 2.2. A dummy

BACnet device is provided in the emulator to test whether BACnet communication can be performed normally. To

communicate with this dummy device, start "DummyDeivceController.exe".

Fig. 2.3 Dummy device controller

 Various state values inside the emulator are managed as BACnet objects. Appendix 1 provides a list of

BACnet objects managed by the emulator.

-9-

 The typical BACnet object types and their uses are listed in Table 2.1. The analog value, input, and output are

objects for managing numeric values, such as integers and real numbers. The binary value, input, and output are the

objects for managing Boolean values. Multistate values, inputs, and outputs are the objects for managing discrete

integer values. The BACnet date time is an object for managing the date and time.

 The value or output can be rewritten from outside the emulator and is primarily used to control the equipment,

whereas the input is read only and primarily used to monitor the system status.

Table 2.1 Value and use example of object types

Object types Value Use example

Analog value, output integer or real Setting setpoint temperature of indoor unit

Analog input integer or real Monitor room temperature

Binary value, output Boolean Setting on/off status of VRF

Binary input Boolean Monitor on/off status of VRF

Multistate value, output unsigned integer Setting fan speed of indoor unit

Multistate input unsigned integer Monitor air flow direction of indoor unit

BACnet date time date and time Get current date and time in the emulator

 One of these types of BACnet objects is provided in the dummy device of the emulator. For example, let us

consider the value of an integer-type analog. If we type "read avi" in the console and hit the Enter key, we obtain the

output shown in Fig. 2.4, which reads "1" as the current state value.

Fig. 2.4 Reading analog value (integer) from the emulator

 The emulator screen displays a request to read the properties of the emulator as shown in Fig. 2.5. This status

display is enabled only for dummy devices to test BACnet communication.

-10-

Fig. 2.5 Response of the emulator

 The analog value can also be rewritten. Type "write avi 5" and press the Enter key to overwrite the value with

“5”. If you input the "read avi" command again, the value will be overwritten with “5”, as shown in Fig. 2.6.

Fig. 2.6 Overwriting the analog value of the emulator

 The DummyDeivceController is launched in a window separate from the emulator. This means that the emulator

is operated via BACnet communication by an externally provided control system and not by the control system

provided by the emulator.

 Therefore, the user is free to decide which algorithm to use to control the VRF. One can even write a control

program in one’s preferred language; it can even be distributed among several autonomous small control programs.

These mechanisms are identical to those used in actual buildings.

-11-

2.4 Running the emulator

 Entering the Enter key in the emulator window begins the simulation, as shown in Fig. 2.7.

Fig. 2.7 Starting the simulation

 By default, the acceleration is set at 600×. The emulator simulates a week in the summer or winter. Every second,

the emulator advances 600 s; therefore, the calculation takes approximately 17 min.

During the calculation, the date and time are followed by seven numbers.

 The two numbers on the left are energy related: the first is the total energy consumption [GJ], and the second,

in parentheses, is the instantaneous energy consumption [GJ/h]. By default, the VRF and ventilation systems were

stopped; therefore, zero continued to be displayed.

 The five numbers on the right are comfort related: the first is the average dissatisfaction rate [-], and the four in

parentheses are the instantaneous dissatisfaction rates from left to right: dissatisfaction rate due to thermal preference,

cold air drafts, vertical temperature difference, and air contamination. The instantaneous dissatisfaction rate is

displayed only when occupants are present in the building.

 When the calculation is finished, the result is written under the "data" directory as shown in Fig. 2.8.

 ├─ data (3)
 │ ├ general.csv (3a)
 │ ├ occupant.csv (3b)
 │ ├ vent.csv (3c)
 │ ├ vrf.csv (3d)
 │ ├ zone.csv (3e)
 │ ├ result.txt (3f)
 │ └ result.szk (3g)

Fig. 2.8 data directory

 General information such as outdoor air conditions, energy consumption, and occupant dissatisfaction rate are

written in "(3a) general.csv.” “(3b) occupant.csv” contains information such as the temperature and thermal sensation

reported by the occupants and the amount of clothing worn. “(3d) vent.csv” contains the CO2 level in the room and

-12-

energy consumption of the ventilation system. “(3d) vrf.csv” contains the energy consumption of the VRF system

and its operation status. “(3e) zone.csv” contains the temperature and humidity of the room. The calculation

conditions and results are written in “(3f) result.txt”. The result is also written to the file "(3g) result.szk" in an

encrypted format.

2.5 Setting emulation parameters

 To change the calculation conditions, change the parameters of "setting.ini. The contents are shown in Fig. 2.9.

use_rso=1; //Use random seed for determine occupants' behavior or not. (0:false, 1:true)
rseed_obhv=1; //Random seed for determine occupants' behaviour randomly.
use_rsw=1; //Use random seed for generating weather data or not. (0:false, 1:true)
rseed_w=1; //Random seed for generating weather data.
rseed_oprm=1; //Random seed for generating parameters of occupants' behaviour model.
timestep=60; //Time step[sec] (0~3600)
scheduller=0; //VRF scheduller enabled (0:disabled, 1:enabled)
controller=0; //VRF controller type (0:Original, 1:Daikin, 2:Mitubishi Electric, 3:Toshiba, 4:Hitachi, 5:Panasonic)
weather=3; //Weather data type (0:Load csv file, 1:Sapporo, 2:Sendai, 3:Tokyo, 4:Osaka, 5:Fukuoka, 6:Naha)
period=0; //Simulation period (0:Summer, 1:Winter)
accelerationRate=600; //Default acceleration rate (1~)
userid=0; //Unique ID to identify results data file
outputSpan=60; //Time interval[sec] outputing results.

Fig. 2.9 Initialization file

 The most important parameters are “period” and “accelerationRate”.

 The “period” parameter changes the period of time for the simulation: 0 for one week in summer and 1 for one

week in winter.

 The " acceleration rate was the acceleration of the calculation. By default, it is set at 600, but it can be set to a

larger value if the computer has a high capability. Conversely, if the computer is incapable of performing the

calculation at the specified rate, "DELAYED" will be displayed, as shown in Fig. 2.10. If this display persists, the

emulator will not be synchronized, and the acceleration must be reduced.

Fig. 2.10 Indication if calculation is not completed in time

-13-

Section 3 Controlling the emulator with a Microsoft Excel file

3.1 Software Description

 The emulator is controlled using BACnet communication; however, many users have no experience in

developing BACnet communication programs. Therefore, a method is provided to control the emulator in the same

way as general periodic simulation software.

 Fig. 3.1 shows the emulator directory.

 Shizuku2
 ├─ Shizuku2.exe (1)
 ├─ setting.ini (2)
 ├─ data (Directory) (3)
 ├─ ExcelController.exe (4)
 ├─ schedule.xlsx (4a)
 ├─ schedule_samples.xlsx (4b)
 ├─ CaseStudyProcessor.exe (4c)
 ├─ schedules (Directory) (4d)
 ├─ DummyDeivceController.exe (5)
 ├─ Library (6)
 └─ Other files

Fig. 3.1 Shizuku2 directory

 “(4) ExcelController.exe” enables the user to send control signals via BACnet, according to a schedule entered

into a Microsoft Excel sheet. Fig. 3.2 shows the calculation process of ExcelController.

Fig. 3.2 Calculation process of ExcelController

 When ExcelController is started, the schedule entered in "(4a) schedule.xlsx" is read as a boundary condition.

When the time of the emulator (Shizuku2) begins to advance, ExcelController sends control signals according to the

schedule loaded to the emulator in accordance with its speed.

 The contents of schedule.xlsx are shown in Fig. 3.3.

Shizuku2.exe ExcelController.exe
BACnet communication

Schedule.xlsx
Load boundary

-14-

Fig. 3.3 Content of ExcelController

 The controls are aligned vertically every 15 min. This 15-minute interval is a fixed value and cannot be changed.

The controls for the outdoor and indoor units and ventilation systems are arranged horizontally. Table 3.1 shows a

list of controllable items.

Table 3.1 Controllable items with ExcelController

Name Description Value

O
ut

do
or

 u
n

it

Control refrigerant temp. Whether or not the machine attempts to control the temperature of
the refrigerant at a constant level.

True / False

Evaporating temperature The setpoint of the evaporating temperature when the temperature
of the refrigerant is controlled to be constant.

Integer

Condensing temperature The setpoint of the condensing temperature when the temperature
of the refrigerant is controlled to be constant.

Integer

In
do

or
 u

ni
t

On/Off On off status of the indoor unit. True / False
Mode Operating mode of the indoor unit. Cool / Heat / Fan
Set point temperature Room set point temperature of the indoor unit. Real
Fan speed Fan speed of the indoor unit. Low / Middle / High
Air direction Air direction of the indoor unit. Horizontal ~ Vertical
Permit remote controller Whether or not to allow office workers to manipulate the room

temperature setpoint
True / False

H
E

X
 On/Off On off status of the heat recovery ventilation. True / False

Bypass Whether or not to supply outdoor air bypassing the heat exchanger. True / False
Fan speed Fan speed of the heat recovery ventilation. True / False

 The "(4b) schedule_samples.xlsx" file contains several examples of the schedule.

 Table 3.2 shows a list the examples prepared. There are 16 examples: H1–H8 for the heating operation, and C1–

C8 for the cooling operation. They differ in terms of whether the condensation or evaporation temperature is fixed,

the room temperature setpoint, fan speed, airflow direction, whether the occupant is allowed to use the remote

controller, and whether the indoor unit in the interior zone is stopped.

-15-

Table 3.2 Conditions of simulation cases

Case -
Condensing /
Evaporating

temperature [°C]

Setpoint
temperature [°C]

Fan speed†
Airflow direction

[degree]
Remote control

permission
Stop VRF in the

interior zone

H1

he
at

in
g

46.0 22.0 Middle 45.0 false false
H2 40.0 22.0 Middle 45.0 false false
H3 46.0 26.0 Middle 45.0 false false
H4 46.0 22.0 Low 45.0 false false
H5 46.0 22.0 Middle 5.0 false false
H6 46.0 22.0 Middle 90.0 false false
H7 46.0 22.0 Middle 45.0 true false
H8 46.0 22.0 Middle 45.0 false true

C1

co
ol

in
g

10.0 26.0 Middle 45.0 false false
C2 15.0 26.0 Middle 45.0 false false
C3 10.0 22.0 Middle 45.0 false false
C4 10.0 26.0 Low 45.0 false false
C5 10.0 26.0 Middle 5.0 false false
C6 10.0 26.0 Middle 90.0 false false
C7 10.0 26.0 Middle 45.0 true false
C8 10.0 26.0 Middle 45.0 false true

 When calculations are performed for various cases with multiple schedules, it is difficult to manually replace

the schedule files and repeat the calculations. In this case, "(4c) CaseStudyProcessor.exe" can be used to automatically

perform calculations for multiple schedule files. As shown in Fig. 3.4, if one or more schedule files are placed in the

"(4d) schedules" directory and run the "(4c) CaseStudyProcessor.exe,” the calculation is executed continuously,

replacing the schedule in the directory.

 ├─ ExcelController.exe (4)
 ├─ schedule.xlsx (4a)
 ├─ schedule_samples.xlsx (4b)
 ├─ CaseStudyProcessor.exe (4c)
 ├─ schedules (Directory) (4d)
 │ ├ schedule1.xlsx
 │ ├ schedule2.xlsx
 │ ├ schedule3.xlsx
 │ └ schedule4.xlsx

Fig. 3.4 Batch calculation method

-16-

3.2 Execution example

 The emulator was started on a standby screen, as shown in Fig. 2.2. When ExcelController is started in this state,

“Schedule.xlsx” is read and Fig. 3.5 is displayed.

Fig. 3.5 Startup ExcelContoller

 ExcelController displays the current date and time in the emulator every second. Because the emulator is still

idling and not advancing time, the initial value “1999/07/21 0:00:00” is repeatedly displayed.

 Entering the Enter key in the emulator window will display the output shown in Fig. 3.6 in the ExcelContoller

window. Some controls have been sent to the emulator, and time has begun to move.

Fig. 3.6 Sending control signals according to schedule

-17-

 Fig. 3.7 shows the emulator window after leaving it for a while and proceeding with the calculation until around

7:00 a.m. Unlike the case without ExcelController, energy is consumed around 7:00 a.m. because the VRF and

ventilation systems are working. Because the temperature and humidity in the room are now controlled, and

ventilation is enabled, the dissatisfaction due to thermal preference and air pollution is smaller than in the case of no

control.

Fig. 3.7 Output of the emulator

-18-

Section 4 Controlling the emulator using programs

4.1 Common language-independent information

 The specifications for BACnet communication are provided in ASHRAE Standard 135-2020. However, creating

a program from scratch based on this specification is impractical. As listed below, libraries for BACnet

communication have been developed in many languages, making this work easier.

 C#: BACsharp BACnet Stack (https://bacsharp.sourceforge.net)

 Java: BACnet4J (https://github.com/MangoAutomation/BACnet4J)

 Python: BACpypes (https://bacpypes.readthedocs.io)

 C: BACnet Protocol Stack (https://sourceforge.net/projects/bacnet)

 Many BACnet devices are connected to the BACnet network, and various types of data are stored in these

devices. This emulator provides the BACnet devices listed in Table 4.1.

Table 4.1 BACnet devices in the emulator

Name ID PORT Description

DateTimeController 1 47809 Manage simulation date, time, and acceleration speed.
VRFController 2 47810 Operate VRF and manage current operating conditions.

VRFScheduller 3 47811
Manage VRF operations on a schedule. Whether or not to activate this device is
optional.

EnvironmentMonitor 4 47812 Monitor outdoor weather conditions and indoor temperature and humidity.
OccupantMonitor 5 47813 Monitor information related to the occupants.
VentilationController 6 47814 Operate ventilation system and manage current operating conditions.
DummyDevice 9 47817 Dummy device to try BACnet communication.

 Each BACnet device has an ID that identifies it. Each BACnet device has a different IP address; however, when

multiple devices belong to the same IP address, as in this emulator, they are identified using different port numbers.

 Several objects are found in a BACnet device, and information related to a device is stored in an object, e.g. in

VRFController, the on/off status of the indoor unit, fan speed, power consumption, etc.. Each of these objects has its

own instance number and type, and their combination is used as an ID with no duplicates. For example, information

related to the power consumption of VRF1 is managed as instance number 1021 and as type “Analog Input.” A list

of BACnet Devices in the emulator and the objects in each device are shown in Appendix 1.

 DateTimeController manages the date and time of the simulation. Unlike real buildings, it contains information

related to acceleration, and manipulating this value can change the speed at which the simulation moves forward.

 VRFScheduller is a device that allows equipment to run on a standard schedule according to a prewritten

program. This device can be enabled or disabled, and is disabled by default.

 DummyDevice is used to check whether BACnet communication is possible, and does not affect the simulation

results (comfort and energy consumption).

 VRFController and VentilationController monitor the status and change the operation of the VRF and ventilation

systems, respectively. EnvironmentMonitor and OccupantMonitor are used to monitor the outdoor/indoor air quality

and thermal sensations of the occupants. The challenge is to use these four devices to monitor the thermal environment

-19-

of a building and the response of the occupants while improving the operation of the HVAC system.

 As mentioned, the instance number and type must be identified for communication via BACnet; however,

writing such a program is complicated. Therefore, we have developed a BACnet communication library for this

emulator. The languages available are Python and .NET (C# or Basic). These libraries are contained in the "Libraries"

directory as shown in Fig. 4.1. In the following sections, we explain how to use thease libraries.

 ├─ Libraries (6)
 │ ├ python.zip (6a)
 │ └ dotnet.zip (6b)

Fig. 4.1 Python and .NET libraries used to communicate with the emulator

-20-

4.2 Controller programs using Python

 First, unzip “python.zip” and prepare some Python program files to communicate with the emulator.

 Fig. 4.2 shows an UML diagram of the relationship between the classes defined in the library. BACpypes is a

BACnet communication library written in Python, and the PresentValueReadWriter class uses it to implement the

function of reading and writing the present value of any BACnet device. The PresentValueReadWriter class also

implements processing to synchronize with the emulator.

 By inheriting the PresentValueReadWriter class, four classes were defined to communicate with the concrete

BACnet device in the emulator.

Fig. 4.2 UML of python classes for communicating with the emulator

 An example of the development of a specific program for operating an emulator using these classes is presented

below. The methods defined in these classes are documented on the following website:

http://www.wccbo.org/lib/python

 As mentioned above, because we are using BACpypes, we must install them using the following commands:

We will skip the explanation of general tasks, such as the installation of Python and PIP.

$ pip install bacpypes

1) Time synchronization

 A program for synchronizing the emulator with the time is shown in Code 4.1.

Code 4.1 Synchronizing the time with the emulator (python)

sample1.py

1
2
3
4
5
6
7
8

import time
import PresentValueReadWriter

pvrw = PresentValueReadWriter.PresentValueReadWriter(10)
print('Subscribe COV...',end='')
while not pvrw.subscribe_date_time_cov():
 time.sleep(0.1)
print('success')

PresentValueReadWriter BACpypes VRFCommunicator

EnvironmentCommunicator

OccupantCommunicator

VentilationSystemCommunicator

-21-

9
10
11
12
13

while True:
 dt = pvrw.current_date_time()
 print(dt.strftime('%Y/%m/%d %H:%M:%S'))
 time.sleep(1.0)

 In line 4, an instance of the PresentValueReadWriter class is created, which synchronizes the time with the

emulator. The argument of the constructor is the ID of a BACnet device. Because information transmission in the

BACnet network occurs between devices, another device is required to communicate with the device in the emulator.

The ID of this device is given as an argument, which can be any value, but duplicate values are not allowed in the

network; therefore, the value should be a number not used in Table 4.1. Because 1, 2, 3, 4, 5, 6, and 9 are already in

use, 10 is used.

 The “subscribe_date_time_cov” in line 6 is a method for synchronizing the time. It registers the device with the

emulator such that it is notified when the emulator's acceleration changes. Because this registration process may fail

owing to network conditions, it is looped in lines 6 and 7, and the registration process is repeated at 100-millisecond

intervals until it succeeds.

 After successful registration, the current date and time (datetime type) can be obtained using the

“current_date_time” method shown in line 11. Here, in lines 12 and 13, the current date and time are written at one-

second intervals.

 The results of running Code 4.1 are shown below. First, the date/time display does not change because the

emulator's time has stopped; however, when the emulator is moved, the time begins to advance.

Subscribe COV...success
1999/07/21 00:00:00
1999/07/21 00:00:00
1999/07/21 00:00:00
1999/07/21 00:00:00
1999/07/21 00:09:13
1999/07/21 00:19:17
1999/07/21 00:29:17
1999/07/21 00:39:19
...

 As described above, the basis of schedule control is to keep checking the current date and time in a loop and

start or stop the HVAC equipment at appropriate times.

 Because all Fig. 4.2 classes are inherited from the PresentValueReadWriter class, time can be synchronized in

the same manner, as explained above.

2) Monitoring of indoor and outdoor environments

 The EnvironmentCommunicator class is used to monitor the indoor and outdoor environments. The program is

shown in Code 4.2, where line 4 is a constructor, and the argument is the ID of the device used for communication.

 The “get_drybulb_temperature” in line 8 is a method of obtaining the dry bulb temperature of the outdoor air.

The return value is an array: the first is whether the communication was successful, and the second is the present

value of the dry bulb temperature. Depending on whether the communication was successful, the results were

-22-

presented in nine lines. Lines 12 and 16 represent the processes of monitoring the relative humidity of outdoor air

and global horizontal radiation, respectively.

 If you want to monitor the dry-bulb temperature of each zone in a room, assign the outdoor and indoor unit

numbers of the VRF that is air-conditioning the zone concerned as arguments, and call the

“get_zone_drybulb_temperature” method as shown in line 20. Here, the dry-bulb temperature of the zone in which

VRF2-4 was air-conditioned was obtained. For relative humidity, do the same, using “get_zone_relative_humidity”

as shown in line 24.

Code 4.2 Monitoring indoor and outdoor environments of the emulator (python)

sample2.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

import time
import EnvironmentCommunicator

eCom = EnvironmentCommunicator.EnvironmentCommunicator(14)

while True:
 print('Reading outdoor air temperature... ',end='')
 val = eCom.get_drybulb_temperature()
 print('{:.1f}'.format(val[1]) + ' C' if val[0] else ' Failed')

 print('Reading outdoor relative humidity... ',end='')
 val = eCom.get_relative_humidity()
 print('{:.1f}'.format(val[1]) + ' %' if val[0] else ' Failed')

 print('Reading global horizontal radiation... ',end='')
 val = eCom.get_global_horizontal_radiation()
 print('{:.1f}'.format(val[1]) + ' W/m2' if val[0] else ' Failed')

 print('Reading drybulb temperature of zone at VRF2-4... ',end='')
 val = eCom.get_zone_drybulb_temperature(2,4)
 print('{:.1f}'.format(val[1]) + ' C' if val[0] else ' Failed')

 print('Reading relative humidity of zone at VRF2-4... ',end='')
 val = eCom.get_zone_relative_humidity(2,4)
 print('{:.1f}'.format(val[1]) + ' %' if val[0] else ' Failed')

 print('')
 time.sleep(1)

 The results of the Code 4.2 run are shown below. the code shows how the temperature and humidity change as

one advances through the time of the emulator.

Reading outdoor air temperature... 25.0 C
Reading outdoor relative humidity... 50.0 %
Reading global horizontal radiation... 0.0 W/m2
Reading drybulb temperature of zone at VRF2-4... 25.0 C
Reading relative humidity of zone at VRF2-4... 50.0 %

Reading outdoor air temperature... 25.0 C
Reading outdoor relative humidity... 50.0 %
...

-23-

3) Monitoring of occupants’ information

 The OccupantCommunicator class is used to obtain information on the office workers. The program is shown

in Code 4.3, where the fourth line is the constructor and the argument is the ID of the device to be used for

communication.

 To obtain the number of occupants by tenant, use the “get_occupant_number” method as shown in line 8. The

OccupantCommunicator class defines an enumerated type “Tenant” to distinguish between north and south tenants,

which is given as an argument. Line 8 is an example of obtaining the number of north tenants. The return value is an

array, the first being whether the communication was successful and the second being the number of occupants.

 The number of occupants by zone can also be obtained using the “get_zone_occupant_number” method in line

12. In this case, the number of zones was provided as an argument. The zone numbers are shown in Fig. 1.4.

 The average thermal sensation and average clo value by zone can be obtained using the

“get_averaged_thermal_sensation” and “get_averaged_clothing_index” methods in lines 16 and 20, respectively.

The return value is zero when there is no return to the office.

 Line 24 shows an example of using the “is_occupant_stay_in_office” method, which determines whether an

occupant stays in the office. To use this method, one must specify whether the tenant is north or south, and the index

number of the occupant in that tenant. Line 24 monitors the occupancy status of the first occupant in the south office.

The index numbers and seating zones for each occupant are presented in Appendix 2.

 Using the same arguments, the thermal sensation and clo value for each occupant can be obtained using the

“get_thermal_sensation” and “get_clothing_index” methods, as shown in lines 28 and 32, respectively.

Code 4.3 Monitoring the occupant state of the emulator (python)

sample3.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

import time
import OccupantCommunicator as occ

oCom = occ.OccupantCommunicator(15)

while True:
 print('Reading occupant number in north tenant... ',end='')
 val = oCom.get_occupant_number(occ.OccupantCommunicator.Tenant.North)
 print(str(val[1]) if val[0] else ' Failed')

 print('Reading occupant number in south tenant zone-1... ',end='')
 val = oCom.get_zone_occupant_number(occ.OccupantCommunicator.Tenant.South,1)
 print(str(val[1]) if val[0] else ' Failed')

 print('Reading averaged thermal sensation (south tenant zone-1)... ',end='')
 val = oCom.get_averaged_thermal_sensation(occ.OccupantCommunicator.Tenant.South,1)
 print('{:.2f}'.format(val[1]) if val[0] else ' Failed')

 print('Reading averaged clothing index (south tenant zone-1)... ',end='')
 val = oCom.get_averaged_clothing_index(occ.OccupantCommunicator.Tenant.South,1)
 print('{:.2f}'.format(val[1]) if val[0] else ' Failed')

 print('Is occupant No.1 in south tenant stay in office? ... ',end='')

-24-

24
25
26
27
28
29
30
31
32
33
34
35
36

 val = oCom.is_occupant_stay_in_office(occ.OccupantCommunicator.Tenant.South, 1)
 print(str(val[1]) if val[0] else ' Failed')

 print('Reading thermal sensation of occupant No.2 in south tenant... ',end='')
 val = oCom.get_thermal_sensation(occ.OccupantCommunicator.Tenant.South, 2)
 print(str(val[1]) if val[0] else ' Failed')

 print('Reading clothing index of occupant No.3 in south tenant... ',end='')
 val = oCom.get_clothing_index(occ.OccupantCommunicator.Tenant.South, 3)
 print('{:.2f}'.format(val[1]) + ' Clo' if val[0] else ' Failed')

 print('')
 time.sleep(1)

 The results of the Code 4.3 run are shown below. One can see how the number of occupants and the thermal

sensation change as the time of the emulator advances.

Reading occupant number in south tenant... 0
Reading occupant number in north tenant... 0
Reading occupant number in south tenant zone-1... 0
Reading averaged thermal sensation (south tenant zone-1)... 0.0
Reading averaged clothing index (south tenant zone-1)... 0.0
Is occupant No.1 in south tenant stay in office? ... False
Reading thermal sensation of occupant No.2 in south tenant... 0
Reading clothing index of occupant No.3 in south tenant... 0.00 Clo

Reading occupant number in south tenant... 0
Reading occupant number in north tenant... 0
...

4) Changing the operation of ventilation system

 The VentilationSystemCommunicator class is used to control the ventilation system. A sample program is shown

in Code 4.4, where line 4 is the constructor and the argument is the ID of the device used for communication.

 The CO2 level can be monitored for each tenant, and this information is obtained using the methods shown in

lines 8 and 12. As with other classes, the return value is an array, the first indicating whether the communication

succeeded and the second is the value of the CO2 level.

 To run the total heat exchanger, use the “start_ventilation” method as shown in line 16. Because the location of

the total heat exchanger is the same as that of the indoor unit of the VRF, the index numbers of the outdoor and indoor

units of the VRF are given as arguments. Line 16 shows an example of starting the entire heat exchanger installed in

the same zone as the indoor unit of VRF1-1. Line 20 describes how to stop the entire heat exchange.

 The fan speed of the total heat exchanger can be controlled in high, medium, or low, and the current setting can

be obtained using the “get_fan_speed” method, as shown in line 24. The arguments are the index numbers of the

outdoor and indoor units of the VRF. The return value is an enumerated type named “FanSpeed” and takes three

values: “High”, “Middle”, and “Low”. If you want to change the setting, use the “change_fan_speed” method in line

28 and give “FanSpeed” as an argument in addition to the index number of outdoor and indoor units of the VRF. Line

28 is an example of setting to the “Middle” speed.

-25-

Code 4.4 Controlling the ventilation system of the emulator (python)

sample4.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

import time
import VentilationSystemCommunicator as vsc

vCom = vsc.VentilationSystemCommunicator(16)

while True:
 print('Reading CO2 level of south tenant... ',end='')
 val = vCom.get_south_tenant_CO2_level()
 print(str(val[1]) if val[0] else ' Failed')

 print('Reading CO2 level of north tenant... ',end='')
 val = vCom.get_north_tenant_CO2_level()
 print(str(val[1]) if val[0] else ' Failed')

 print('Turning on HEX1-1... ',end='')
 val = vCom.start_ventilation(1,1)
 print('success' if val[0] else ' Failed')

 print('Turning off HEX1-1... ',end='')
 val = vCom.stop_ventilation(1,1)
 print('success' if val[0] else ' Failed')

 print('Reading fan speed of HEX1-1... ',end='')
 val = vCom.get_fan_speed(1,1)
 print(str(val[1]) if val[0] else ' Failed')

 print('Changing fan speed of HEX1-1 to Middle...',end='')
 rslt = vCom.change_fan_speed(1,1,vsc.VentilationSystemCommunicator.FanSpeed.Middle)
 print('success' if rslt[0] else 'failed')

 print('')
 time.sleep(1)

 The results of the Code 4.4 run are shown below. We can see how the CO2 level increases or decreases over

time in the emulator.

Reading CO2 level of south tenant... 400
Reading CO2 level of north tenant... 400
Turning on HEX1-1... success
Turning off HEX1-1... success
Reading fan speed of HEX1-1... FanSpeed.High
Changing fan speed of HEX1-1 to Middle...success

Reading CO2 level of south tenant... 400
Reading CO2 level of north tenant... 400
...

5) Changing the operation of the VRF system

 The VRFSystemCommunicator class is used to control the VRF system. The program is shown in Code 4.5,

-26-

where line 4 is the constructor, and the argument is the ID of the device used for communication.

 The indoor unit measures the dry-bulb temperature and relative humidity of the return air, and the values are

obtained using the method shown in lines 8 and 12. The arguments are the index numbers of outdoor and indoor units.

In this example, the return air status of VRF1-2 is obtained.

 To start or stop the indoor unit, use the “turn_on” and “turn_off” methods as shown in lines 16 and 20. The

outdoor unit starts if any of the connected indoor units start, and stops if all of them stop.

 The operation mode is changed by the “change_mode” method shown in line 24. The argument is an enumerated

type named “Mode” in addition to the outdoor and indoor unit index numbers. The operation mode can be selected

from “Cooling,” “Heating,” or “ThermoOff”. The VRF in this emulator does not recover heat and runs in either

cooling or heating mode. When indoor units with different operation modes are connected to the same outdoor unit,

the operation mode of the indoor unit with a smaller number of units is prioritized.

 To change the fan speed, use the “change_fan_speed” method in line 32. Use the enumerated type named

“FanSpeed” as the argument, and select from “High,” “Middle,” and “Low”.

 To change the air flow direction, use the “change_direction” method in line 36. It uses an enumerator named

“Direction” as an argument and can be set in 22.5-degree increments. Five options exist: “Horizontal,” “Degree_225,”

“Degree_450,” “Degree_675,” and “Vertical.”

 To enable the use of the indoor unit controller by an occupant, use the “permit_local_control” method in line

40. For prohibition, use the “prohibit_local_control” method in line 44. If allowed, the occupants will change the

setpoint temperature according to their thermal preferences. While they feel satisfied with being able to operate the

system themselves, there is the danger that a lot of energy will be expended to set it up as they wish.

Code 4.5 Controlling the VRF system of the emulator (python)

sample5.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import time
import VRFSystemCommunicator as vrc

vCom = vrc.VRFSystemCommunicator(12)

while True:
 print('Reading return air temperature of VRF1-2...',end='')
 rslt = vCom.get_return_air_temperature(1,2)
 print(str(rslt[1]) + ' C' if rslt[0] else 'failed')

 print('Reading return air relative humidity of VRF1-2...',end='')
 rslt = vCom.get_return_air_relative_humidity(1,2)
 print(str(rslt[1]) + ' %' if rslt[0] else 'failed')

 print('Turning on VRF1-2...',end='')
 rslt = vCom.turn_on(1,2)
 print('success' if rslt[0] else 'failed')

 print('Turning off VRF1-2...',end='')
 rslt = vCom.turn_off(1,2)
 print('success' if rslt[0] else 'failed')

 print('Changing mode of VRF1-2 to cooling...',end='')
 rslt = vCom.change_mode(1,2,vrc.VRFSystemCommunicator.Mode.Cooling)

-27-

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

 print('success' if rslt[0] else 'failed')

 print('Changing set point temperature of VRF1-2 to 26C...',end='')
 rslt = vCom.change_setpoint_temperature(1,2,26)
 print('success' if rslt[0] else 'failed')

 print('Changing fan speed of VRF1-2 to high...',end='')
 rslt = vCom.change_fan_speed(1,2,vrc.VRFSystemCommunicator.FanSpeed.High)
 print('success' if rslt[0] else 'failed')

 print('Changing direction of VRF1-2 to 45degree...',end='')
 rslt = vCom.change_direction(1,2,vrc.VRFSystemCommunicator.Direction.Degree_450)
 print('success' if rslt[0] else 'failed')

 print('Permitting local control of VRF1-2...',end='')
 rslt = vCom.permit_local_control(1,2)
 print('success' if rslt[0] else 'failed')

 print('Prohibiting local control of VRF1-2...',end='')
 rslt = vCom.prohibit_local_control(1,2)
 print('success' if rslt[0] else 'failed')

 print('')
 time.sleep(1)

 The results of the Code 4.5 run are presented below. The return temperature and humidity fluctuate as the

emulator advances.

Reading return air temperature of VRF1-2...24.0 C
Reading return air relative humidity of VRF1-2...50.0 %
Turning on VRF1-2...success
Turning off VRF1-2...success
Changing mode of VRF1-2 to cooling...success
Changing set point temperature of VRF1-2 to 26C...success
Changing fan speed of VRF1-2 to high...success
Changing direction of VRF1-2 to 45degree...success
Permitting local control of VRF1-2...success
Prohibiting local control of VRF1-2...success

Reading return air temperature of VRF1-2...24.0 C
Reading return air relative humidity of VRF1-2...50.0 %
...

6) Control according to schedule

 An example of a simple scheduler is shown in Code 4.6.

 Instances of communication with the VRF and ventilation system are created in Lines 6 and 7.

 To control the air-conditioning units according to the current date and time, time synchronization is enabled in

line 11; therefore, the synchronization of both the VRF and the ventilation system communication instance is not

required.

 The array in line 16 represents the number of indoor units in each VRF system.

 The loop in lines 19–75 determines whether to control the air conditioning every 0.5 s; as shown in lines 18 and

-28-

74, the date and time of the previous loop are stored in “last_dt” to start the air conditioning when it changes from

the time of day to stop to the time of day to run, and to stop it when the opposite is true. to the decision of whether to

start air conditioning is determined by the day of the week and time and is calculated by the method defined in lines

77–83.

 The current date and time are outputted to the console, as shown in lines 21 and 22.

 The cooling and heating modes and setpoint temperature are switched according to the season, summer or winter,

as shown in lines 25–28.

 When starting up the air conditioning, not only do you start up the VRF and ventilation system, but also set the

fan speed and air flow direction of the indoor unit, as shown in lines 31–58.

 The process for stopping the system is shown in lines 61–72.

Code 4.6 Simple VRF and ventilation system scheduler for the emulator (python)

sample6.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

import time, datetime
import VRFSystemCommunicator as vrc
import VentilationSystemCommunicator as vsc

def main():
 vrCom = vrc.VRFCommunicator(12)
 vsCom = vsc.VentilationSystemCommunicator(16)

 # Enable current_date_time method
 print('Subscribe COV...')
 while not vrCom.subscribe_date_time_cov():
 time.sleep(0.1)
 print('success')

 # Number of indoor units in each VRF system
 i_unit_num = [5,4,5,4]

 last_dt = vrCom.current_date_time()
 while True:
 # Output current date and time
 dt = vrCom.current_date_time()
 print(dt.strftime('%Y/%m/%d %H:%M:%S'))

 # Change mode, air flow direction, and set point temperature depends on season
 is_s = 5 <= dt.month and dt.month <= 10
 mode = vrc.VRFSystemCommunicator.Mode.Cooling if is_s else vrc.VRFSystemCommunicator.Mode.Heating
 dir = vrc.VRFSystemCommunicator.Direction.Horizontal if is_s else vrc.VRFSystemCommunicator.Direction.Vertical

 sp = 26 if is_s else 22

 # When the HVAC changed to operating hours
 if(not(is_hvac_time(last_dt)) and is_hvac_time(dt)):
 for i in range(len(i_unit_num)):
 for j in range(i_unit_num[i]):
 v_name = 'VRF' + str(i + 1) + '-' + str(j+1)

 print('Turning on ' + v_name + '...',end='')
 rslt = vrCom.turn_on(i+1,j+1)
 print('success' if rslt[0] else 'failed: ' + rslt[1])

-29-

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

 print('Turning on ' + v_name + ' (Ventilation)...',end='')
 rslt = vsCom.start_ventilation(i+1,j+1)
 print('success' if rslt[0] else 'failed: ' + rslt[1])

 print('Changing mode of ' + v_name + ' to ' + str(mode) + '...',end='')
 rslt = vrCom.change_mode(i+1,j+1,mode)
 print('success' if rslt[0] else 'failed: ' + rslt[1])

 print('Changing set point temperature of ' + v_name + ' to ' + str(sp) + 'C...',end='')
 rslt = vrCom.change_setpoint_temperature(i+1,j+1,sp)
 print('success' if rslt[0] else 'failed: ' + rslt[1])

 print('Changing fanspeed of ' + v_name + ' to Middle...',end='')
 rslt = vrCom.change_fan_speed(i+1,j+1,vrc.VRFSystemCommunicator.FanSpeed.Middle)
 print('success' if rslt[0] else 'failed: ' + rslt[1])

 print('Changing direction of ' + v_name + ' to ' + str(dir) + '...',end='')
 rslt = vrCom.change_direction(i+1,j+1,dir)
 print('success' if rslt[0] else 'failed: ' + rslt[1])

 # When the HVAC changed to stop hours
 if(is_hvac_time(last_dt) and not(is_hvac_time(dt))):
 for i in range(len(i_unit_num)):
 for j in range(i_unit_num[i]):
 v_name = 'VRF' + str(i + 1) + '-' + str(j+1)

 print('Turning off ' + v_name + '...',end='')
 rslt = vrCom.turn_off(i+1,j+1)
 print('success' if rslt else 'failed')

 print('Turning off ' + v_name + ' (Ventilation)...',end='')
 rslt = vsCom.stop_ventilation(i+1,j+1)
 print('success' if rslt else 'failed')

 last_dt = dt # Save last date and time
 time.sleep(0.5)

def is_hvac_time(dtime):
 start_time = datetime.time(7, 0)
 end_time = datetime.time(19, 0)
 now = dtime.time()
 is_business_hour = start_time <= now <= end_time
 is_weekday = (dtime.weekday() != 5 and dtime.weekday() != 6)
 return is_weekday and is_business_hour

if __name__ == "__main__":
 main()

7) CO2 level-based ventilation control

 Code 4.7 shows a program that adjusts the ventilation volume according to the CO2 level.

 The methods for synchronizing the time and determining the time of day for air conditioning are the same as

those in Code 4.6.

 Lines 21–40 show the processes for controlling the ventilation fan speed. The process is repeated at 1-second

intervals during the day for air conditioning.

-30-

 Lines 23–26 show the process of monitoring the CO2 levels for each tenant. The ventilation fan speed is changed

according to the CO2 level using the “get_fan_speed” method as shown in lines 29 and 30. This method is defined

in lines 43–49. The fan speed of each of the heat exchangers is changed from lines 37 to 40.

Code 4.7 Demand control ventilation with CO2 level (python)

sample7.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

import time, datetime
import VentilationSystemCommunicator as vsc

def main():
 vsCom = vsc.VentilationSystemCommunicator(26)

 # Enable current_date_time method
 print('Subscribe COV...')
 while not vsCom.subscribe_date_time_cov():
 time.sleep(0.1)
 print('success')

 # Number of indoor units in each VRF system
 i_unit_num = [5,4,5,4]

 while True:
 # Output current date and time
 dt = vsCom.current_date_time()
 print(dt.strftime('%Y/%m/%d %H:%M:%S'))

 if(is_hvac_time(dt)):
 # Get CO2 level
 val = vsCom.get_south_tenant_CO2_level()
 south_co2 = val[1] if val[0] else 1000
 val = vsCom.get_north_tenant_CO2_level()
 north_co2 = val[1] if val[0] else 1000

 # Switch fan speed
 south_fs = get_fan_speed(south_co2)
 north_fs = get_fan_speed(north_co2)

 # Output status
 print('South tenant: ' + str(south_fs) + ' (' + str(south_co2) + ')')
 print('North tenant: ' + str(north_fs) + ' (' + str(north_co2) + ')')

 # Change fan speed
 for i in range(len(i_unit_num)):
 fs = south_fs if i == 0 or i==1 else north_fs
 for j in range(i_unit_num[i]):
 val = vsCom.change_fan_speed(i+1,j+1,fs)
 time.sleep(1.0)

def get_fan_speed(co2_level):
 if co2_level < 600:
 return vsc.VentilationSystemCommunicator.FanSpeed.Low
 elif co2_level < 800:
 return vsc.VentilationSystemCommunicator.FanSpeed.Middle
 else:
 return vsc.VentilationSystemCommunicator.FanSpeed.High

-31-

50
51
52
53
54
55
56
57
58
59
60
61

def is_hvac_time(dtime):
 start_time = datetime.time(7, 0)
 end_time = datetime.time(19, 0)
 now = dtime.time()
 is_business_hour = start_time <= now <= end_time
 is_weekday = (dtime.weekday() != 5 and dtime.weekday() != 6)
 return is_weekday and is_business_hour

if __name__ == "__main__":
 main()

 This program only controls the fan speed of all heat exchangers; therefore, the on/off status must be controlled

using other programs. You can run Code 4.6 you have already developed simultaneously. Because a BACnet device

can communicate with multiple devices simultaneously, control functions can be distributed, as shown in Fig. 4.3.

Avoid duplicating device IDs (line 7 of Code 4.6 and line 5 of Code 4.7).

Fig. 4.3 Emulator control by multiple BACnet Devices

 Fig. 4.4 shows how the CO2 level in the south office changes over a week when the ventilation is controlled

only by Code 4.6 and when Code 4.7 is enabled. When ventilation is controlled by the CO2 level, the level remained

at a slightly higher value. The primary energy consumption per week is reduced by more than 10%, from 8.73 GJ to

7.71 GJ.

Fig. 4.4 CO2 level of the south office with and without CO2 control

350

400

450

500

550

600

650

700

750

800

0:
00

4:
00

8:
00

12
:0

0
16

:0
0

20
:0

0
0:

00
4:

00
8:

00
12

:0
0

16
:0

0
20

:0
0

0:
00

4:
00

8:
00

12
:0

0
16

:0
0

20
:0

0
0:

00
4:

00
8:

00
12

:0
0

16
:0

0
20

:0
0

0:
00

4:
00

8:
00

12
:0

0
16

:0
0

20
:0

0
0:

00
4:

00
8:

00
12

:0
0

16
:0

0
20

:0
0

0:
00

4:
00

8:
00

12
:0

0
16

:0
0

20
:0

0
0:

00

C
O

2
 L

e
ve

l o
f

so
u

th
 te

n
a

n
t

No Control CO2 Control

Emulator

Sample6.py Sample7.py

BACnet BACnet

(Schedule on/off status) (Control fan speed with CO2 level)

-32-

4.3 Controller programs using C#

 In this section, we use C# to develop a program with the same functionality as the program in Python developed

in the previous section.

 First, unzip “dotnet.zip” in the Libraries directory and prepare the Visual Studio solution files shown in Fig. 4.5.

SampleControllers
 ├ SampleContollers.sln
 ├ dll (directory)
 │ ├ Shizuku2Lib.dll
 │ └ Other files
 ├ Sample1
 ├ Sample2
 ├ Sample3
 ├ Sample4
 ├ Sample5
 ├ Sample6
 ├ Sample7
 └ publish

Fig. 4.5 Sample controller projects for Visual Studio

 “BACSharp” is a BACnet communication library for. “NET”. “Shizuku2Lib.dll” in the “dll” directory

communicates with emulators using BACSharp. By loading this DLL, one can easily communicate with the emulator

in C# or basic language.

 The structure of the prepared classes is the same as that of the Python library shown in Fig. 4.2, with the basic

“PresentValueReadWriter” class and four concrete communication classes derived from it.

 Below, we show concrete programs for the same functions as in the previous section; however, because the

method names and functions defined in each class are almost the same as those in the Python library, we omit

duplicate explanations.

 Documentation for each class can be found at the following website.

http://www.wccbo.org/lib/dotnet

1) Time synchronization

 As in the Python example, an instance of the PresentValueReadWriter class is created in line 9. This argument

is the device ID. In C#, the “StartService” method must be called to initiate BACnet communication, as shown in

line 10. This process is the same for the subsequent samples.

 Time synchronization is initiated by registering with the COV in line 13. In C#, the current time can be

referenced in the "CurrentDateTime" property, as shown in line 19.

Code 4.8 Time synchronization with the emulator (C#)

Sample1/Program.cs

1
2
3
4

using Shizuku2.BACnet;

namespace Sample1
{

-33-

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 internal class Program
 {
 static void Main(string[] args)
 {
 PresentValueReadWriter pvrw = new PresentValueReadWriter(10);
 pvrw.StartService();

 Console.Write("Subscribe COV...");
 while (!pvrw.SubscribeDateTimeCOV())
 Thread.Sleep(100);
 Console.WriteLine("success");

 while (true)
 {
 DateTime dt = pvrw.CurrentDateTime;
 Console.WriteLine(dt.ToString("yyyy/MM/dd HH:mm:ss"));
 Thread.Sleep(1000);
 }
 }
 }
}

2) Monitoring of indoor and outdoor environments

 Instance creation is similar to Python.

 In C#, the success or failure of communication is passed on with reference to the method argument. For example,

in line 17, ”succeeded” is assigned the result of whether the communication was successful.

Code 4.9 Monitoring indoor and outdoor environments of the emulator (C#)

Sample2/Program.cs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

using Shizuku2.BACnet;

namespace Sample2
{
 internal class Program
 {
 static void Main(string[] args)
 {
 EnvironmentCommunicator eCom = new EnvironmentCommunicator(14);
 eCom.StartService();

 while (true)
 {
 bool succeeded;

 Console.Write("Reading outdoor air temperature...");
 double dbt = eCom.GetDrybulbTemperature(out succeeded);
 Console.WriteLine(succeeded ? dbt.ToString("F1") : "failed");

 Console.Write("Reading outdoor air relative humidity...");
 double hmd = eCom.GetRelativeHumidity(out succeeded);
 Console.WriteLine(succeeded ? hmd.ToString("F1") : "failed");

 Console.Write("Reading global horizontal radiation...");

-34-

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

 double rad = eCom.GetGlobalHorizontalRadiation(out succeeded);
 Console.WriteLine(succeeded ? rad.ToString("F1") : "failed");

 Console.Write("Reading drybulb temperature of zone at VRF2-4...");
 double dbtZn = eCom.GetZoneDrybulbTemperature(2, 4, out succeeded);
 Console.WriteLine(succeeded ? dbtZn.ToString("F1") : "failed");

 Console.Write("Reading relative humidity of zone at VRF2-4...");
 double hmdZn = eCom.GetZoneRelativeHumidity(2, 4, out succeeded);
 Console.WriteLine(succeeded ? hmdZn.ToString("F1") : "failed");

 Console.WriteLine();
 Thread.Sleep(1000);
 }
 }
 }
}

3) Monitoring of occupant information

 The program flow is almost the same as a program in python.

Code 4.10 Monitoring the occupant state of the emulator (C#)

Sample3/Program.cs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

using Shizuku2.BACnet;

namespace Sample3
{
 internal class Program
 {
 static void Main(string[] args)
 {
 OccupantCommunicator oCom = new OccupantCommunicator(15);
 oCom.StartService();

 while (true)
 {
 bool succeeded;

 Console.Write("Reading occupant number in north tenant......");
 int oNum = oCom.GetOccupantNumber(OccupantCommunicator.Tenant.North, out succeeded);
 Console.WriteLine(succeeded ? oNum.ToString() : "failed");

 Console.Write("Reading occupant number in south tenant zone-1...");
 int oNumZ = oCom.GetOccupantNumber(OccupantCommunicator.Tenant.North, 1, out succeeded);
 Console.WriteLine(succeeded ? oNumZ.ToString() : "failed");

 Console.Write("Reading averaged thermal sensation (south tenant zone-1)...");
 float aTS = oCom.GetAveragedThermalSensation(OccupantCommunicator.Tenant.North, 1, out succeeded);

 Console.WriteLine(succeeded ? aTS.ToString("F1") : "failed");

 Console.Write("Reading averaged clothing index (south tenant zone-1)...");
 float aCI = oCom.GetAveragedClothingIndex(OccupantCommunicator.Tenant.North, 1, out succeeded);
 Console.WriteLine(succeeded ? aCI.ToString("F1") : "failed");

-35-

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

 Console.Write("Is occupant No.1 in south tenant stay in office? ...");
 bool ocS = oCom.IsOccupantStayInOffice(OccupantCommunicator.Tenant.North, 1, out succeeded);
 Console.WriteLine(succeeded ? ocS.ToString() : "failed");

 Console.Write("Reading thermal sensation of occupant No.2 in south tenant...");
 OccupantCommunicator.ThermalSensation ts =
 oCom.GetThermalSensation(OccupantCommunicator.Tenant.South, 2, out succeeded);
 Console.WriteLine(succeeded ? ts.ToString() : "failed");

 Console.Write("Reading clothing index of occupant No.3 in south tenant...");
 float ci = oCom.GetClothingIndex(OccupantCommunicator.Tenant.North, 3, out succeeded);
 Console.WriteLine(succeeded ? ci.ToString("F2") : "failed");

 Console.WriteLine();
 Thread.Sleep(1000);
 }
 }
 }
}

4) Changing the operation of the ventilation system

 The program flow is almost the same as a program in python.

Code 4.11 Control of the ventilation system of the emulator (C#)

Sample4/Program.cs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

using Shizuku2.BACnet;

namespace Sample4
{
 internal class Program
 {
 static void Main(string[] args)
 {
 VentilationSystemCommunicator vCom = new VentilationSystemCommunicator(16);
 vCom.StartService();

 while (true)
 {
 bool succeeded;

 Console.Write("Reading CO2 level of south tenant...");
 double coS = vCom.GetSouthTenantCO2Level(out succeeded);
 Console.WriteLine(succeeded ? coS.ToString() : "failed");

 Console.Write("Reading CO2 level of north tenant...");
 double coN = vCom.GetNorthTenantCO2Level(out succeeded);
 Console.WriteLine(succeeded ? coN.ToString() : "failed");

 Console.Write("Turning on HEX1-1...");
 vCom.StartVentilation(1, 1, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Turning off HEX1-1...");
 vCom.StopVentilation(1, 1, out succeeded);

-36-

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Reading fan speed of HEX1-1...");
 VentilationSystemCommunicator.FanSpeed fs = vCom.GetFanSpeed(1, 1, out succeeded);
 Console.WriteLine(succeeded ? fs.ToString() : "failed");

 Console.Write("Changing fan speed of HEX1-1 to Middle...");
 vCom.ChangeFanSpeed(1, 1, VentilationSystemCommunicator.FanSpeed.Middle, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.WriteLine();
 Thread.Sleep(1000);
 }
 }
 }
}

5) Changing the operation of the VRF system

 The program flow is almost the same as the program in python.

Code 4.12 Control of the VRF system of the emulator (C#)

sample5.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

using Shizuku2.BACnet;

namespace Sample5
{
 internal class Program
 {
 static void Main(string[] args)
 {
 VRFSystemCommunicator vCom = new VRFSystemCommunicator(12);
 vCom.StartService();

 while (true)
 {
 bool succeeded;

 Console.Write("Reading return air temperature of VRF1-2...");
 double dbt = vCom.GetReturnAirTemperature(1, 2, out succeeded);
 Console.WriteLine(succeeded ? dbt.ToString("F1") : "failed");

 Console.Write("Reading return air relative humidity of VRF1-2...");
 double hmd = vCom.GetReturnAirRelativeHumidity(1, 2, out succeeded);
 Console.WriteLine(succeeded ? hmd.ToString("F1") : "failed");

 Console.Write("Turning on VRF1-2...");
 vCom.TurnOn(1, 2, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Turning off VRF1-2...");
 vCom.TurnOff(1, 2, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Changing mode of VRF1-2 to cooling...");

-37-

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

 vCom.ChangeMode(1, 2, VRFSystemCommunicator.Mode.Cooling, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Changing set point temperature of VRF1-2 to 26C...");
 vCom.ChangeSetpointTemperature(1, 2, 26, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Changing fan speed of VRF1-2 to high...");
 vCom.ChangeFanSpeed(1, 2, VRFSystemCommunicator.FanSpeed.High, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Changing direction of VRF1-2 to 45degree...");
 vCom.ChangeDirection(1, 2, VRFSystemCommunicator.Direction.Degree_450, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Permitting local control of VRF1-2...");
 vCom.PermitLocalControl(1,2,out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Prohibiting local control of VRF1-2...");
 vCom.ProhibitLocalControl(1,2,out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.WriteLine();
 Thread.Sleep(1000);
 }
 }
 }
}

6) Control according to schedule

 The program flow is almost the same as a program in python.

Code 4.13 Simple VRF and ventilation system scheduler for the emulator (C#)

Sample6/Program.cs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

using Shizuku2.BACnet;

namespace Sample6
{
 internal class Program
 {
 static void Main(string[] args)
 {
 VRFSystemCommunicator vrCom = new VRFSystemCommunicator(12);
 VentilationSystemCommunicator vsCom = new VentilationSystemCommunicator(16);
 vrCom.StartService();
 vsCom.StartService();

 // Enable CurrentDateTime property
 Console.Write("Subscribe COV...");
 while (!vrCom.SubscribeDateTimeCOV())
 Thread.Sleep(100);
 Console.WriteLine("success");

-38-

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

 // Number of indoor units in each VRF system
 int[] iUnitNum = new int[] { 5, 4, 5, 4 };

 DateTime lastDt = vrCom.CurrentDateTime;
 while (true)
 {
 DateTime dt = vrCom.CurrentDateTime;
 Console.WriteLine(dt.ToString("yyyy/MM/dd HH:mm:ss"));

 // Change mode, air flow direction, and set point temperature depends on season
 bool isSum = 5 <= dt.Month && dt.Month <= 10;
 VRFSystemCommunicator.Mode mode = VRFSystemCommunicator.Mode.Heating;
 VRFSystemCommunicator.Direction dir = VRFSystemCommunicator.Direction.Vertical;
 float sp = 22;
 if (isSum)
 {
 mode = VRFSystemCommunicator.Mode.Cooling;
 dir = VRFSystemCommunicator.Direction.Horizontal;
 sp = 26;
 }

 // When the HVAC changed to operating hours
 if (!isHVACTime(lastDt) && isHVACTime(dt))
 {
 for (int i = 0; i < iUnitNum.Length; i++)
 {
 for (int j = 0; j < iUnitNum[i]; j++)
 {
 bool succeeded;
 uint oIdx = (uint)(i + 1);
 uint iIdx = (uint)(j + 1);
 string vName = "VRF" + oIdx + "-" + iIdx;

 Console.Write("Turning on " + vName + "...");
 vrCom.TurnOn(oIdx, iIdx, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Turning on " + vName + "(Ventilation)...");
 vsCom.StartVentilation(oIdx, iIdx, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Changing mode of " + vName + " to " + mode + "...");
 vrCom.ChangeMode(oIdx, iIdx, mode, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Changing set point temperature of " + vName + " to " + sp + "C...");
 vrCom.ChangeSetpointTemperature(oIdx, iIdx, sp, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Changing fan speed of " + vName + " to Middle...");
 vrCom.ChangeFanSpeed(oIdx, iIdx, VRFSystemCommunicator.FanSpeed.Middle, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Changing air flow direction of " + vName + " to " + dir + "...");
 vrCom.ChangeDirection(oIdx, iIdx, dir, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");
 }
 }

-39-

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

 }
 // When the HVAC changed to stop hours
 else if (isHVACTime(lastDt) && !isHVACTime(dt))
 {
 for (int i = 0; i < iUnitNum.Length; i++)
 {
 for (int j = 0; j < iUnitNum[i]; j++)
 {
 bool succeeded;
 uint oIdx = (uint)(i + 1);
 uint iIdx = (uint)(j + 1);
 string vName = "VRF" + oIdx + "-" + iIdx;

 Console.Write("Turning off " + vName + "...");
 vrCom.TurnOff(oIdx, iIdx, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");

 Console.Write("Turning off " + vName + "(Ventilation)...");
 vsCom.StopVentilation(oIdx, iIdx, out succeeded);
 Console.WriteLine(succeeded ? "success" : "failed");
 }
 }
 }

 lastDt = dt;
 Thread.Sleep(500);
 }
 }

 static bool isHVACTime(DateTime dt)
 {
 bool isBusinessHour = 7 <= dt.Hour && dt.Hour <= 19;
 bool isWeekday = dt.DayOfWeek != DayOfWeek.Saturday && dt.DayOfWeek != DayOfWeek.Sunday;
 return isWeekday && isBusinessHour;
 }
 }
}

7) CO2 level-based ventilation control

 The program flow is almost the same as the program in python.

Code 4.14 Demand control ventilation with CO2 level (C#)

Sample7/Program.cs

1
2
3
4
5
6
7
8
9

10
11

using Shizuku2.BACnet;

namespace Sample7
{
 internal class Program
 {
 static void Main(string[] args)
 {
 VentilationSystemCommunicator vsCom = new VentilationSystemCommunicator(26);
 vsCom.StartService();

-40-

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

 // Enable CurrentDateTime property
 Console.Write("Subscribe COV...");
 while (!vsCom.SubscribeDateTimeCOV())
 Thread.Sleep(100);
 Console.WriteLine("success");

 // Number of indoor units in each VRF system
 int[] iUnitNum = new int[] { 5, 4, 5, 4 };

 while (true)
 {
 DateTime dt = vsCom.CurrentDateTime;
 Console.WriteLine(dt.ToString("yyyy/MM/dd HH:mm:ss"));

 // When the HVAC changed to operating hours
 if (isHVACTime(dt))
 {
 for (int i = 0; i < iUnitNum.Length; i++)
 {
 bool succeeded;
 uint southCO2 = vsCom.GetSouthTenantCO2Level(out succeeded);
 uint northCO2 = vsCom.GetNorthTenantCO2Level(out succeeded);

 VentilationSystemCommunicator.FanSpeed southFS = getFanSpeed(southCO2);
 VentilationSystemCommunicator.FanSpeed northFS = getFanSpeed(northCO2);

 Console.WriteLine("South tenant: " + southFS.ToString() + "(" + southCO2.ToString() + ")");
 Console.WriteLine("North tenant: " + northFS.ToString() + "(" + northCO2.ToString() + ")");

 for (int j = 0; j < iUnitNum[i]; j++)
 {
 VentilationSystemCommunicator.FanSpeed fs = i == 0 ? southFS : northFS;
 vsCom.ChangeFanSpeed((uint)(i + 1), (uint)(j + 1), fs, out _);
 }
 }
 }

 Thread.Sleep(1000);
 }
 }

 static VentilationSystemCommunicator.FanSpeed getFanSpeed(uint co2Level)
 {
 if (co2Level < 600) return VentilationSystemCommunicator.FanSpeed.Low;
 else if (co2Level < 800) return VentilationSystemCommunicator.FanSpeed.Middle;
 else return VentilationSystemCommunicator.FanSpeed.High;
 }

 static bool isHVACTime(DateTime dt)
 {
 bool isBusinessHour = 7 <= dt.Hour && dt.Hour <= 19;
 bool isWeekday = dt.DayOfWeek != DayOfWeek.Saturday && dt.DayOfWeek != DayOfWeek.Sunday;
 return isWeekday && isBusinessHour;
 }
 }
}

-41-

Section 5 Points to keep in mind when improving HVAC operations

 This chapter discusses the mechanisms by which buildings, VRF, and occupant characteristics affect energy

consumption and comfort. All of these are explicitly expressed inside the emulator using physical equations and

statistics, and should be given attention to optimize the operation of the VRF.

5.1 Building-related notes

1) Owing to the influence of the outer envelope, the heat load trends differed between the perimeter and interior

zones. Particularly in winter, heating and cooling may be required in perimeter and interior zones, respectively,

and the heat supplied by the HVAC system may mix, resulting in losses.

2) Because of the changing position of the sun, the thermal environment varies with building orientation and time

of day. The east side of the building has a greater influence on solar radiation in the morning, whereas the north

side has a smaller influence throughout the day.

3) In winter, cooling and heating demands may switch during the day, with heating in the morning and cooling in

the afternoon. This is particularly likely to occur in the interior zones, where the influence of the outer envelope

is small.

4) Owing to the thermal capacity of the building, it takes time for the room temperature to stabilize after the air

conditioning has started. This time is generally greater in winter than in summer because the temperature

difference between the inside and outside of the building is greater.

5) Owing to the thermal capacity of the building, the indoor temperature does not immediately equal the outdoor

temperature when air conditioning is turned off.

6) The perimeter zone has windows and exterior walls that are thermally influenced from the outdoors; therefore,

the radiant thermal environment differs from that of the interior zone. Therefore, the perimeter zone feels warmer

during the cooling season and colder during the heating season, compared to the interior zone, even when the

air temperature and humidity are the same.

7) Indoor air mixes easily in the horizontal direction. Therefore, even if an indoor unit in one zone is stopped, the

temperature and humidity do not change significantly because the air mixes with the adjacent zone.

8) As air has different densities depending on its temperature, a vertical temperature distribution is created, where

the upper side is warmer and the lower side is cooler. Air is more difficult to mix vertically than horizontally;

unless forced to do so by a fan, eliminating the vertical temperature distribution is difficult.

9) A total heat exchanger is a device that reduces energy by exchanging heat between the exhaust air from indoors

and the supply air from outdoors. However, in some cases, such as cooling in the fall or winter, the heat load

can be reduced by bypassing air and disabling heat recovery.

5.2 VRF system-related notes

1) Lowering the setpoint temperature during the cooling season increases the thermal load and energy consumption.

2) Increasing the evaporation temperature during the cooling operation reduces the energy consumption, even at

the same cooling load. However, the maximum cooling capacity of the VRF will be reduced. In addition, the

amount of dehumidification is reduced, which may affect comfort.

3) Increasing the setpoint temperature during the heating season increases the heat load and energy consumption.

4) Lowering the condensing temperature during the heating operation reduces energy consumption, even at the

-42-

same heating load. However, the maximum heating capacity of the VRF becomes smaller. In addition, the

blowout temperature of the indoor unit will be lower, and the possibility of dissatisfaction owing to drafts will

increase.

5) The energy efficiency of the VRF varies with the partial load rate, and is lower at lower load rates.

6) During cooling, the airflow blown out from the indoor unit does not go straight but curves downward and falls.

The lower the blowing temperature, the greater is the curvature.

7) During heating, the airflow blown out from the indoor unit does not go straight but curves upward. The higher

the blowing temperature, the greater is the curvature.

8) The higher the blowing air velocity of the indoor unit, the farther the airflow reaches. Therefore, if the air

velocity is significantly reduced during heating, the airflow does not reach the lower space, thereby increasing

the risk of a large vertical temperature distribution.

9) The higher the blowing-air velocity of the indoor unit, the greater its capacity. However, during cooling, the

ratio of latent heat exchange (dehumidification) is reduced, which may affect comfort.

10) When the blowing angle of an indoor unit is made closer to the vertical direction, the ratio of airflow reaching

the lower space increases, and the vertical temperature distribution decreases. However, the risk of a draft

increases because the velocity of the airflow to the occupants increases.

5.3 Occupant related notes

1) Thermal sensations are primarily influenced by six factors: dry-bulb temperature, relative humidity, mean

radiant temperature, relative air velocity, amount of clothing, and metabolic rate.

2) People have certain thermal preferences.

3) People may feel dissatisfied when there is a large vertical temperature distribution in a room.

4) When the airflow from the indoor unit directly hits the skin, occupants may complain of chills. However, when

occupants feel that a space is warm, dissatisfaction is unlikely to occur.

5) Occupants are dissatisfied when the ventilation is low and the air is excessively polluted. (Note that in this

emulator, occupants are programmed to complain when the CO2 level exceeds 1,000 ppm, but actual occupants

are not as sensitive to CO2 concentration.)

6) Occupants decide the amount of clothing they will wear that day by referring to the thermal environment of the

room on the previous day and the outside air conditions on the morning of the day. Even after arriving at work,

occupants can adjust the amount of clothing they wear to some extent by wearing jackets or rolling their sleeves

up.

7) Occupants are more likely to feel satisfied when they can operate air-conditioning units and adjust their thermal

environments.

8) Occupants first try to adjust the thermal environment using their personal clothing, and when they do not resolve

their dissatisfaction, they try to change their air conditioner settings.

[References]

1) ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) (2020): Standard 135-

2020, BACnet - A Data Communication Protocol for Building Automation and Control Networks

Appendix 1

BACnet devices and objects

-A1-1-

1) Objects in the “DateTimeController” device
Inst.
No.

Type Name Description
Initial
value

1 DATETIME_VALUE Current date and time Current date and time on the simulation. This value might been accelerated. 1999/7/21 0:00
2 ANALOG_OUTPUT Acceleration rate This object is used to set the acceleration rate to run the emulator. 0
3 DATETIME_VALUE Base real date and time Real world date and time starting to accelerate. 2023/9/25 18:42
4 DATETIME_VALUE Base date and time in the simulation Date and time on the simulation when the acceleration started 1999/7/21 0:00

2) Objects in the “VRFController” device

 Instance number = 1000 × outdoor unit index + 100 × indoor unit index + member number.

 For information related to the entire system, use zero for the indoor unit index.

 Member numbers are as follows:

 OnOff_Setting = 1, OnOff_Status = 2, OperationMode_Setting = 3, OperationMode_Status = 4, Setpoint_Setting = 5 and Setpoint_Status = 6

 MeasuredRoomTemperature = 7, MeasuredRelativeHumidity = 8, FanSpeed_Setting = 9, FanSpeed_Status = 10, AirflowDirection_Setting = 11,

 AirflowDirection_Status = 12, RemoteControllerPermittion_Setpoint_Setting = 13, RemoteControllerPermittion_Setpoint_Status = 14,

 ForcedRefrigerantTemperature_Setting = 15, ForcedRefrigerantTemperature_Status = 16, EvaporatingTemperatureSetpoint_Setting = 17,

 EvaporatingTemperatureSetpoint_Status = 18, CondensingTemperatureSetpoint_Setting = 19, CondensingTemperatureSetpoint_Status = 20,

 Electricity = 21, HeatLoad = 22

Inst.
No.

Type Name Description
Initial
value

1015 BINARY_VALUE RefrigerantTempCtrlSetting_VRF1 This object is used to change the forced evaporating/condensing control of VRF system. 0
1016 BINARY_INPUT RefrigerantTempCtrlStatus_VRF1 This object is used to monitor the forced evaporating/condensing control of VRF system. 0
1017 ANALOG_VALUE EvpTempSetting_VRF1 This object is used to set the evaporating temperature of VRF system. 10
1018 ANALOG_INPUT EvpTempStatus_VRF1 This object is used to monitor the evaporating temperature of VRF system. 10
1019 ANALOG_VALUE CndTempSetting_VRF1 This object is used to set the condensing temperature of VRF system. 45
1020 ANALOG_INPUT CndTempStatus_VRF1 This object is used to monitor the condensing temperature of VRF system. 45
1021 ANALOG_INPUT Electricity_VRF1 This object is used to monitor the outdoor unit's electric consumption (fans and compressors). 0
1022 ANALOG_INPUT HeatLoad_VRF1 This object is used to monitor the heat load of VRF system. 0
1101 BINARY_OUTPUT OnOffCommand_VRF1-1 This object is used to start (On)/stop (Off) the indoor unit. 0
1102 BINARY_INPUT OnOffStatus_VRF1-1 This object is used to monitor the indoor unit's On/Off status. 0
1103 MULTI_STATE_OUTPUT ModeCommand_VRF1-1 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1104 MULTI_STATE_INPUT ModeStatus_VRF1-1 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1105 ANALOG_VALUE TempSPSetting_VRF1-1 This object is used to set the indoor unit's setpoint. 24
1106 ANALOG_INPUT TempSPStatus_VRF1-1 This object is used to monitor the indoor unit's setpoint. 24
1107 ANALOG_INPUT RoomTemp_VRF1-1 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
1108 ANALOG_INPUT RoomRHmid_VRF1-1 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
1109 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF1-1 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
1110 MULTI_STATE_INPUT AirFlowRateStatus_VRF1-1 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2

-A1-2-

1111 MULTI_STATE_OUTPUT AirDirectionCommand_VRF1-1 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1112 MULTI_STATE_INPUT AirDirectionStatus_VRF1-1 This object is used to monitor the indoor unit’s airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1113 BINARY_VALUE RemoteControlStart_VRF1-1 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
1114 BINARY_INPUT RemoteControlStart_VRF1-1 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
1121 ANALOG_INPUT Electricity_VRF1-1 This object is used to monitor the indoor unit's electric consumption. 0
1122 ANALOG_INPUT HeatLoad_VRF1-1 This object is used to monitor the heat load of indoor unit. 0
1201 BINARY_OUTPUT OnOffCommand_VRF1-2 This object is used to start (On)/stop (Off) the indoor unit. 0
1202 BINARY_INPUT OnOffStatus_VRF1-2 This object is used to monitor the indoor unit's On/Off status. 0
1203 MULTI_STATE_OUTPUT ModeCommand_VRF1-2 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1204 MULTI_STATE_INPUT ModeStatus_VRF1-2 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1205 ANALOG_VALUE TempSPSetting_VRF1-2 This object is used to set the indoor unit's setpoint. 24
1206 ANALOG_INPUT TempSPStatus_VRF1-2 This object is used to monitor the indoor unit's setpoint. 24
1207 ANALOG_INPUT RoomTemp_VRF1-2 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
1208 ANALOG_INPUT RoomRHmid_VRF1-2 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
1209 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF1-2 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
1210 MULTI_STATE_INPUT AirFlowRateStatus_VRF1-2 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
1211 MULTI_STATE_OUTPUT AirDirectionCommand_VRF1-2 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1212 MULTI_STATE_INPUT AirDirectionStatus_VRF1-2 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1213 BINARY_VALUE RemoteControlStart_VRF1-2 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
1214 BINARY_INPUT RemoteControlStart_VRF1-2 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
1221 ANALOG_INPUT Electricity_VRF1-2 This object is used to monitor the indoor unit's electric consumption. 0
1222 ANALOG_INPUT HeatLoad_VRF1-2 This object is used to monitor the heat load of indoor unit. 0
1301 BINARY_OUTPUT OnOffCommand_VRF1-3 This object is used to start (On)/stop (Off) the indoor unit. 0
1302 BINARY_INPUT OnOffStatus_VRF1-3 This object is used to monitor the indoor unit's On/Off status. 0
1303 MULTI_STATE_OUTPUT ModeCommand_VRF1-3 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1304 MULTI_STATE_INPUT ModeStatus_VRF1-3 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1305 ANALOG_VALUE TempSPSetting_VRF1-3 This object is used to set the indoor unit's setpoint. 24
1306 ANALOG_INPUT TempSPStatus_VRF1-3 This object is used to monitor the indoor unit's setpoint. 24
1307 ANALOG_INPUT RoomTemp_VRF1-3 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
1308 ANALOG_INPUT RoomRHmid_VRF1-3 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
1309 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF1-3 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
1310 MULTI_STATE_INPUT AirFlowRateStatus_VRF1-3 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
1311 MULTI_STATE_OUTPUT AirDirectionCommand_VRF1-3 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1312 MULTI_STATE_INPUT AirDirectionStatus_VRF1-3 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1313 BINARY_VALUE RemoteControlStart_VRF1-3 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
1314 BINARY_INPUT RemoteControlStart_VRF1-3 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
1321 ANALOG_INPUT Electricity_VRF1-3 This object is used to monitor the indoor unit's electric consumption. 0
1322 ANALOG_INPUT HeatLoad_VRF1-3 This object is used to monitor the heat load of indoor unit. 0
1401 BINARY_OUTPUT OnOffCommand_VRF1-4 This object is used to start (On)/stop (Off) the indoor unit. 0
1402 BINARY_INPUT OnOffStatus_VRF1-4 This object is used to monitor the indoor unit's On/Off status. 0
1403 MULTI_STATE_OUTPUT ModeCommand_VRF1-4 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1404 MULTI_STATE_INPUT ModeStatus_VRF1-4 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1405 ANALOG_VALUE TempSPSetting_VRF1-4 This object is used to set the indoor unit's setpoint. 24
1406 ANALOG_INPUT TempSPStatus_VRF1-4 This object is used to monitor the indoor unit's setpoint. 24
1407 ANALOG_INPUT RoomTemp_VRF1-4 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
1408 ANALOG_INPUT RoomRHmid_VRF1-4 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
1409 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF1-4 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
1410 MULTI_STATE_INPUT AirFlowRateStatus_VRF1-4 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2

-A1-3-

1411 MULTI_STATE_OUTPUT AirDirectionCommand_VRF1-4 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1412 MULTI_STATE_INPUT AirDirectionStatus_VRF1-4 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1413 BINARY_VALUE RemoteControlStart_VRF1-4 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
1414 BINARY_INPUT RemoteControlStart_VRF1-4 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
1421 ANALOG_INPUT Electricity_VRF1-4 This object is used to monitor the indoor unit's electric consumption. 0
1422 ANALOG_INPUT HeatLoad_VRF1-4 This object is used to monitor the heat load of indoor unit. 0
1501 BINARY_OUTPUT OnOffCommand_VRF1-5 This object is used to start (On)/stop (Off) the indoor unit. 0
1502 BINARY_INPUT OnOffStatus_VRF1-5 This object is used to monitor the indoor unit's On/Off status. 0
1503 MULTI_STATE_OUTPUT ModeCommand_VRF1-5 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1504 MULTI_STATE_INPUT ModeStatus_VRF1-5 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
1505 ANALOG_VALUE TempSPSetting_VRF1-5 This object is used to set the indoor unit's setpoint. 24
1506 ANALOG_INPUT TempSPStatus_VRF1-5 This object is used to monitor the indoor unit's setpoint. 24
1507 ANALOG_INPUT RoomTemp_VRF1-5 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
1508 ANALOG_INPUT RoomRHmid_VRF1-5 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
1509 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF1-5 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
1510 MULTI_STATE_INPUT AirFlowRateStatus_VRF1-5 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
1511 MULTI_STATE_OUTPUT AirDirectionCommand_VRF1-5 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1512 MULTI_STATE_INPUT AirDirectionStatus_VRF1-5 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
1513 BINARY_VALUE RemoteControlStart_VRF1-5 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
1514 BINARY_INPUT RemoteControlStart_VRF1-5 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
1521 ANALOG_INPUT Electricity_VRF1-5 This object is used to monitor the indoor unit's electric consumption. 0
1522 ANALOG_INPUT HeatLoad_VRF1-5 This object is used to monitor the heat load of indoor unit. 0
2015 BINARY_VALUE RefrigerantTempCtrlSetting_VRF2 This object is used to change the forced evaporating/condensing control of VRF system. 0
2016 BINARY_INPUT RefrigerantTempCtrlStatus_VRF2 This object is used to monitor the forced evaporating/condensing control of VRF system. 0
2017 ANALOG_VALUE EvpTempSetting_VRF2 This object is used to set the evaporating temperature of VRF system. 10
2018 ANALOG_INPUT EvpTempStatus_VRF2 This object is used to monitor the evaporating temperature of VRF system. 10
2019 ANALOG_VALUE CndTempSetting_VRF2 This object is used to set the condensing temperature of VRF system. 45
2020 ANALOG_INPUT CndTempStatus_VRF2 This object is used to monitor the condensing temperature of VRF system. 45
2021 ANALOG_INPUT Electricity_VRF2 This object is used to monitor the outdoor unit's electric consumption (fans and compressors). 0
2022 ANALOG_INPUT HeatLoad_VRF2 This object is used to monitor the heat load of VRF system. 0
2101 BINARY_OUTPUT OnOffCommand_VRF2-1 This object is used to start (On)/stop (Off) the indoor unit. 0
2102 BINARY_INPUT OnOffStatus_VRF2-1 This object is used to monitor the indoor unit's On/Off status. 0
2103 MULTI_STATE_OUTPUT ModeCommand_VRF2-1 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
2104 MULTI_STATE_INPUT ModeStatus_VRF2-1 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
2105 ANALOG_VALUE TempSPSetting_VRF2-1 This object is used to set the indoor unit's setpoint. 24
2106 ANALOG_INPUT TempSPStatus_VRF2-1 This object is used to monitor the indoor unit's setpoint. 24
2107 ANALOG_INPUT RoomTemp_VRF2-1 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
2108 ANALOG_INPUT RoomRHmid_VRF2-1 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
2109 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF2-1 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
2110 MULTI_STATE_INPUT AirFlowRateStatus_VRF2-1 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
2111 MULTI_STATE_OUTPUT AirDirectionCommand_VRF2-1 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
2112 MULTI_STATE_INPUT AirDirectionStatus_VRF2-1 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
2113 BINARY_VALUE RemoteControlStart_VRF2-1 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
2114 BINARY_INPUT RemoteControlStart_VRF2-1 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
2121 ANALOG_INPUT Electricity_VRF2-1 This object is used to monitor the indoor unit's electric consumption. 0
2122 ANALOG_INPUT HeatLoad_VRF2-1 This object is used to monitor the heat load of indoor unit. 0
2201 BINARY_OUTPUT OnOffCommand_VRF2-2 This object is used to start (On)/stop (Off) the indoor unit. 0
2202 BINARY_INPUT OnOffStatus_VRF2-2 This object is used to monitor the indoor unit's On/Off status. 0

-A1-4-

2203 MULTI_STATE_OUTPUT ModeCommand_VRF2-2 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
2204 MULTI_STATE_INPUT ModeStatus_VRF2-2 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
2205 ANALOG_VALUE TempSPSetting_VRF2-2 This object is used to set the indoor unit's setpoint. 24
2206 ANALOG_INPUT TempSPStatus_VRF2-2 This object is used to monitor the indoor unit's setpoint. 24
2207 ANALOG_INPUT RoomTemp_VRF2-2 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
2208 ANALOG_INPUT RoomRHmid_VRF2-2 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
2209 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF2-2 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
2210 MULTI_STATE_INPUT AirFlowRateStatus_VRF2-2 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
2211 MULTI_STATE_OUTPUT AirDirectionCommand_VRF2-2 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
2212 MULTI_STATE_INPUT AirDirectionStatus_VRF2-2 This object is used to monitor the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
2213 BINARY_VALUE RemoteControlStart_VRF2-2 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
2214 BINARY_INPUT RemoteControlStart_VRF2-2 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
2221 ANALOG_INPUT Electricity_VRF2-2 This object is used to monitor the indoor unit's electric consumption. 0
2222 ANALOG_INPUT HeatLoad_VRF2-2 This object is used to monitor the heat load of indoor unit. 0
2301 BINARY_OUTPUT OnOffCommand_VRF2-3 This object is used to start (On)/stop (Off) the indoor unit. 0
2302 BINARY_INPUT OnOffStatus_VRF2-3 This object is used to monitor the indoor unit's On/Off status. 0
2303 MULTI_STATE_OUTPUT ModeCommand_VRF2-3 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
2304 MULTI_STATE_INPUT ModeStatus_VRF2-3 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
2305 ANALOG_VALUE TempSPSetting_VRF2-3 This object is used to set the indoor unit's setpoint. 24
2306 ANALOG_INPUT TempSPStatus_VRF2-3 This object is used to monitor the indoor unit's setpoint. 24
2307 ANALOG_INPUT RoomTemp_VRF2-3 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
2308 ANALOG_INPUT RoomRHmid_VRF2-3 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
2309 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF2-3 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
2310 MULTI_STATE_INPUT AirFlowRateStatus_VRF2-3 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
2311 MULTI_STATE_OUTPUT AirDirectionCommand_VRF2-3 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
2312 MULTI_STATE_INPUT AirDirectionStatus_VRF2-3 This object is used to monitor the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
2313 BINARY_VALUE RemoteControlStart_VRF2-3 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
2314 BINARY_INPUT RemoteControlStart_VRF2-3 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
2321 ANALOG_INPUT Electricity_VRF2-3 This object is used to monitor the indoor unit's electric consumption. 0
2322 ANALOG_INPUT HeatLoad_VRF2-3 This object is used to monitor the heat load of indoor unit. 0
2401 BINARY_OUTPUT OnOffCommand_VRF2-4 This object is used to start (On)/stop (Off) the indoor unit. 0
2402 BINARY_INPUT OnOffStatus_VRF2-4 This object is used to monitor the indoor unit's On/Off status. 0
2403 MULTI_STATE_OUTPUT ModeCommand_VRF2-4 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
2404 MULTI_STATE_INPUT ModeStatus_VRF2-4 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
2405 ANALOG_VALUE TempSPSetting_VRF2-4 This object is used to set the indoor unit's setpoint. 24
2406 ANALOG_INPUT TempSPStatus_VRF2-4 This object is used to monitor the indoor unit's setpoint. 24
2407 ANALOG_INPUT RoomTemp_VRF2-4 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
2408 ANALOG_INPUT RoomRHmid_VRF2-4 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
2409 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF2-4 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
2410 MULTI_STATE_INPUT AirFlowRateStatus_VRF2-4 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
2411 MULTI_STATE_OUTPUT AirDirectionCommand_VRF2-4 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
2412 MULTI_STATE_INPUT AirDirectionStatus_VRF2-4 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
2413 BINARY_VALUE RemoteControlStart_VRF2-4 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
2414 BINARY_INPUT RemoteControlStart_VRF2-4 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
2421 ANALOG_INPUT Electricity_VRF2-4 This object is used to monitor the indoor unit's electric consumption. 0
2422 ANALOG_INPUT HeatLoad_VRF2-4 This object is used to monitor the heat load of indoor unit. 0
3015 BINARY_VALUE RefrigerantTempCtrlSetting_VRF3 This object is used to change the forced evaporating/condensing control of VRF system. 0
3016 BINARY_INPUT RefrigerantTempCtrlStatus_VRF3 This object is used to monitor the forced evaporating/condensing control of VRF system. 0

-A1-5-

3017 ANALOG_VALUE EvpTempSetting_VRF3 This object is used to set the evaporating temperature of VRF system. 10
3018 ANALOG_INPUT EvpTempStatus_VRF3 This object is used to monitor the evaporating temperature of VRF system. 10
3019 ANALOG_VALUE CndTempSetting_VRF3 This object is used to set the condensing temperature of VRF system. 45
3020 ANALOG_INPUT CndTempStatus_VRF3 This object is used to monitor the condensing temperature of VRF system. 45
3021 ANALOG_INPUT Electricity_VRF3 This object is used to monitor the outdoor unit's electric consumption (fans and compressors). 0
3022 ANALOG_INPUT HeatLoad_VRF3 This object is used to monitor the heat load of VRF system. 0
3101 BINARY_OUTPUT OnOffCommand_VRF3-1 This object is used to start (On)/stop (Off) the indoor unit. 0
3102 BINARY_INPUT OnOffStatus_VRF3-1 This object is used to monitor the indoor unit's On/Off status. 0
3103 MULTI_STATE_OUTPUT ModeCommand_VRF3-1 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3104 MULTI_STATE_INPUT ModeStatus_VRF3-1 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3105 ANALOG_VALUE TempSPSetting_VRF3-1 This object is used to set the indoor unit's setpoint. 24
3106 ANALOG_INPUT TempSPStatus_VRF3-1 This object is used to monitor the indoor unit's setpoint. 24
3107 ANALOG_INPUT RoomTemp_VRF3-1 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
3108 ANALOG_INPUT RoomRHmid_VRF3-1 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
3109 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF3-1 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3110 MULTI_STATE_INPUT AirFlowRateStatus_VRF3-1 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3111 MULTI_STATE_OUTPUT AirDirectionCommand_VRF3-1 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3112 MULTI_STATE_INPUT AirDirectionStatus_VRF3-1 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3113 BINARY_VALUE RemoteControlStart_VRF3-1 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
3114 BINARY_INPUT RemoteControlStart_VRF3-1 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
3121 ANALOG_INPUT Electricity_VRF3-1 This object is used to monitor the indoor unit's electric consumption. 0
3122 ANALOG_INPUT HeatLoad_VRF3-1 This object is used to monitor the heat load of indoor unit. 0
3201 BINARY_OUTPUT OnOffCommand_VRF3-2 This object is used to start (On)/stop (Off) the indoor unit. 0
3202 BINARY_INPUT OnOffStatus_VRF3-2 This object is used to monitor the indoor unit's On/Off status. 0
3203 MULTI_STATE_OUTPUT ModeCommand_VRF3-2 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3204 MULTI_STATE_INPUT ModeStatus_VRF3-2 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3205 ANALOG_VALUE TempSPSetting_VRF3-2 This object is used to set the indoor unit's setpoint. 24
3206 ANALOG_INPUT TempSPStatus_VRF3-2 This object is used to monitor the indoor unit's setpoint. 24
3207 ANALOG_INPUT RoomTemp_VRF3-2 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
3208 ANALOG_INPUT RoomRHmid_VRF3-2 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
3209 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF3-2 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3210 MULTI_STATE_INPUT AirFlowRateStatus_VRF3-2 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3211 MULTI_STATE_OUTPUT AirDirectionCommand_VRF3-2 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3212 MULTI_STATE_INPUT AirDirectionStatus_VRF3-2 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3213 BINARY_VALUE RemoteControlStart_VRF3-2 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
3214 BINARY_INPUT RemoteControlStart_VRF3-2 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
3221 ANALOG_INPUT Electricity_VRF3-2 This object is used to monitor the indoor unit's electric consumption. 0
3222 ANALOG_INPUT HeatLoad_VRF3-2 This object is used to monitor the heat load of indoor unit. 0
3301 BINARY_OUTPUT OnOffCommand_VRF3-3 This object is used to start (On)/stop (Off) the indoor unit. 0
3302 BINARY_INPUT OnOffStatus_VRF3-3 This object is used to monitor the indoor unit's On/Off status. 0
3303 MULTI_STATE_OUTPUT ModeCommand_VRF3-3 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3304 MULTI_STATE_INPUT ModeStatus_VRF3-3 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3305 ANALOG_VALUE TempSPSetting_VRF3-3 This object is used to set the indoor unit's setpoint. 24
3306 ANALOG_INPUT TempSPStatus_VRF3-3 This object is used to monitor the indoor unit's setpoint. 24
3307 ANALOG_INPUT RoomTemp_VRF3-3 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
3308 ANALOG_INPUT RoomRHmid_VRF3-3 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
3309 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF3-3 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3310 MULTI_STATE_INPUT AirFlowRateStatus_VRF3-3 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2

-A1-6-

3311 MULTI_STATE_OUTPUT AirDirectionCommand_VRF3-3 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3312 MULTI_STATE_INPUT AirDirectionStatus_VRF3-3 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3313 BINARY_VALUE RemoteControlStart_VRF3-3 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
3314 BINARY_INPUT RemoteControlStart_VRF3-3 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
3321 ANALOG_INPUT Electricity_VRF3-3 This object is used to monitor the indoor unit's electric consumption. 0
3322 ANALOG_INPUT HeatLoad_VRF3-3 This object is used to monitor the heat load of indoor unit. 0
3401 BINARY_OUTPUT OnOffCommand_VRF3-4 This object is used to start (On)/stop (Off) the indoor unit. 0
3402 BINARY_INPUT OnOffStatus_VRF3-4 This object is used to monitor the indoor unit's On/Off status. 0
3403 MULTI_STATE_OUTPUT ModeCommand_VRF3-4 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3404 MULTI_STATE_INPUT ModeStatus_VRF3-4 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3405 ANALOG_VALUE TempSPSetting_VRF3-4 This object is used to set the indoor unit's setpoint. 24
3406 ANALOG_INPUT TempSPStatus_VRF3-4 This object is used to monitor the indoor unit's setpoint. 24
3407 ANALOG_INPUT RoomTemp_VRF3-4 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
3408 ANALOG_INPUT RoomRHmid_VRF3-4 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
3409 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF3-4 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3410 MULTI_STATE_INPUT AirFlowRateStatus_VRF3-4 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3411 MULTI_STATE_OUTPUT AirDirectionCommand_VRF3-4 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3412 MULTI_STATE_INPUT AirDirectionStatus_VRF3-4 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3413 BINARY_VALUE RemoteControlStart_VRF3-4 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
3414 BINARY_INPUT RemoteControlStart_VRF3-4 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
3421 ANALOG_INPUT Electricity_VRF3-4 This object is used to monitor the indoor unit's electric consumption. 0
3422 ANALOG_INPUT HeatLoad_VRF3-4 This object is used to monitor the heat load of indoor unit. 0
3501 BINARY_OUTPUT OnOffCommand_VRF3-5 This object is used to start (On)/stop (Off) the indoor unit. 0
3502 BINARY_INPUT OnOffStatus_VRF3-5 This object is used to monitor the indoor unit's On/Off status. 0
3503 MULTI_STATE_OUTPUT ModeCommand_VRF3-5 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3504 MULTI_STATE_INPUT ModeStatus_VRF3-5 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
3505 ANALOG_VALUE TempSPSetting_VRF3-5 This object is used to set the indoor unit's setpoint. 24
3506 ANALOG_INPUT TempSPStatus_VRF3-5 This object is used to monitor the indoor unit's setpoint. 24
3507 ANALOG_INPUT RoomTemp_VRF3-5 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
3508 ANALOG_INPUT RoomRHmid_VRF3-5 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
3509 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF3-5 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3510 MULTI_STATE_INPUT AirFlowRateStatus_VRF3-5 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
3511 MULTI_STATE_OUTPUT AirDirectionCommand_VRF3-5 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3512 MULTI_STATE_INPUT AirDirectionStatus_VRF3-5 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
3513 BINARY_VALUE RemoteControlStart_VRF3-5 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
3514 BINARY_INPUT RemoteControlStart_VRF3-5 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
3521 ANALOG_INPUT Electricity_VRF3-5 This object is used to monitor the indoor unit's electric consumption. 0
3522 ANALOG_INPUT HeatLoad_VRF3-5 This object is used to monitor the heat load of indoor unit. 0
4015 BINARY_VALUE RefrigerantTempCtrlSetting_VRF4 This object is used to change the forced evaporating/condensing control of VRF system. 0
4016 BINARY_INPUT RefrigerantTempCtrlStatus_VRF4 This object is used to monitor the forced evaporating/condensing control of VRF system. 0
4017 ANALOG_VALUE EvpTempSetting_VRF4 This object is used to set the evaporating temperature of VRF system. 10
4018 ANALOG_INPUT EvpTempStatus_VRF4 This object is used to monitor the evaporating temperature of VRF system. 10
4019 ANALOG_VALUE CndTempSetting_VRF4 This object is used to set the condensing temperature of VRF system. 45
4020 ANALOG_INPUT CndTempStatus_VRF4 This object is used to monitor the condensing temperature of VRF system. 45
4021 ANALOG_INPUT Electricity_VRF4 This object is used to monitor the outdoor unit's electric consumption (fans and compressors). 0
4022 ANALOG_INPUT HeatLoad_VRF4 This object is used to monitor the heat load of VRF system. 0
4101 BINARY_OUTPUT OnOffCommand_VRF4-1 This object is used to start (On)/stop (Off) the indoor unit. 0
4102 BINARY_INPUT OnOffStatus_VRF4-1 This object is used to monitor the indoor unit's On/Off status. 0

-A1-7-

4103 MULTI_STATE_OUTPUT ModeCommand_VRF4-1 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
4104 MULTI_STATE_INPUT ModeStatus_VRF4-1 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
4105 ANALOG_VALUE TempSPSetting_VRF4-1 This object is used to set the indoor unit's setpoint. 24
4106 ANALOG_INPUT TempSPStatus_VRF4-1 This object is used to monitor the indoor unit's setpoint. 24
4107 ANALOG_INPUT RoomTemp_VRF4-1 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
4108 ANALOG_INPUT RoomRHmid_VRF4-1 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
4109 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF4-1 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
4110 MULTI_STATE_INPUT AirFlowRateStatus_VRF4-1 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
4111 MULTI_STATE_OUTPUT AirDirectionCommand_VRF4-1 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
4112 MULTI_STATE_INPUT AirDirectionStatus_VRF4-1 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
4113 BINARY_VALUE RemoteControlStart_VRF4-1 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
4114 BINARY_INPUT RemoteControlStart_VRF4-1 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
4121 ANALOG_INPUT Electricity_VRF4-1 This object is used to monitor the indoor unit's electric consumption. 0
4122 ANALOG_INPUT HeatLoad_VRF4-1 This object is used to monitor the heat load of indoor unit. 0
4201 BINARY_OUTPUT OnOffCommand_VRF4-2 This object is used to start (On)/stop (Off) the indoor unit. 0
4202 BINARY_INPUT OnOffStatus_VRF4-2 This object is used to monitor the indoor unit's On/Off status. 0
4203 MULTI_STATE_OUTPUT ModeCommand_VRF4-2 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
4204 MULTI_STATE_INPUT ModeStatus_VRF4-2 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
4205 ANALOG_VALUE TempSPSetting_VRF4-2 This object is used to set the indoor unit's setpoint. 24
4206 ANALOG_INPUT TempSPStatus_VRF4-2 This object is used to monitor the indoor unit's setpoint. 24
4207 ANALOG_INPUT RoomTemp_VRF4-2 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
4208 ANALOG_INPUT RoomRHmid_VRF4-2 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
4209 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF4-2 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
4210 MULTI_STATE_INPUT AirFlowRateStatus_VRF4-2 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
4211 MULTI_STATE_OUTPUT AirDirectionCommand_VRF4-2 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
4212 MULTI_STATE_INPUT AirDirectionStatus_VRF4-2 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
4213 BINARY_VALUE RemoteControlStart_VRF4-2 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
4214 BINARY_INPUT RemoteControlStart_VRF4-2 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
4221 ANALOG_INPUT Electricity_VRF4-2 This object is used to monitor the indoor unit's electric consumption. 0
4222 ANALOG_INPUT HeatLoad_VRF4-2 This object is used to monitor the heat load of indoor unit. 0
4301 BINARY_OUTPUT OnOffCommand_VRF4-3 This object is used to start (On)/stop (Off) the indoor unit. 0
4302 BINARY_INPUT OnOffStatus_VRF4-3 This object is used to monitor the indoor unit's On/Off status. 0
4303 MULTI_STATE_OUTPUT ModeCommand_VRF4-3 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
4304 MULTI_STATE_INPUT ModeStatus_VRF4-3 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
4305 ANALOG_VALUE TempSPSetting_VRF4-3 This object is used to set the indoor unit's setpoint. 24
4306 ANALOG_INPUT TempSPStatus_VRF4-3 This object is used to monitor the indoor unit's setpoint. 24
4307 ANALOG_INPUT RoomTemp_VRF4-3 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
4308 ANALOG_INPUT RoomRHmid_VRF4-3 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
4309 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF4-3 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
4310 MULTI_STATE_INPUT AirFlowRateStatus_VRF4-3 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
4311 MULTI_STATE_OUTPUT AirDirectionCommand_VRF4-3 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
4312 MULTI_STATE_INPUT AirDirectionStatus_VRF4-3 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
4313 BINARY_VALUE RemoteControlStart_VRF4-3 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
4314 BINARY_INPUT RemoteControlStart_VRF4-3 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
4321 ANALOG_INPUT Electricity_VRF4-3 This object is used to monitor the indoor unit's electric consumption. 0
4322 ANALOG_INPUT HeatLoad_VRF4-3 This object is used to monitor the heat load of indoor unit. 0
4401 BINARY_OUTPUT OnOffCommand_VRF4-4 This object is used to start (On)/stop (Off) the indoor unit. 0
4402 BINARY_INPUT OnOffStatus_VRF4-4 This object is used to monitor the indoor unit's On/Off status. 0

-A1-8-

4403 MULTI_STATE_OUTPUT ModeCommand_VRF4-4 This object is used to set an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
4404 MULTI_STATE_INPUT ModeStatus_VRF4-4 This object is used to monitor an indoor unit's operation mode. 1: cool; 2: heat; 3: fan 3
4405 ANALOG_VALUE TempSPSetting_VRF4-4 This object is used to set the indoor unit's setpoint. 24
4406 ANALOG_INPUT TempSPStatus_VRF4-4 This object is used to monitor the indoor unit's setpoint. 24
4407 ANALOG_INPUT RoomTemp_VRF4-4 This object is used to monitor the room dry-bulb temperature detected by the indoor unit return air sensor. 24
4408 ANALOG_INPUT RoomRHmid_VRF4-4 This object is used to monitor the room relative humidity detected by the indoor unit return air sensor. 50
4409 MULTI_STATE_OUTPUT AirFlowRateCommand_VRF4-4 This object is used to set an indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
4410 MULTI_STATE_INPUT AirFlowRateStatus_VRF4-4 This object is used to monitor the indoor unit's fan speed. 1: Low; 2: Middle; 3: High 2
4411 MULTI_STATE_OUTPUT AirDirectionCommand_VRF4-4 This object is used to change the indoor unit's airflow direction. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
4412 MULTI_STATE_INPUT AirDirectionStatus_VRF4-4 This object is used to monitor the indoor unit’s airflow direction.. 1: Horizontal; 2: 22.5deg; 3: 45deg; 4: 67.5deg; 5: Vertical 5
4413 BINARY_VALUE RemoteControlStart_VRF4-4 This object is used to permit or prohibit the On/Off operation from the remote controller. 0
4414 BINARY_INPUT RemoteControlStart_VRF4-4 This object is used to monitor status of permit or prohibit the On/Off operation from the remote controller. 0
4421 ANALOG_INPUT Electricity_VRF4-4 This object is used to monitor the indoor unit's electric consumption. 0
4422 ANALOG_INPUT HeatLoad_VRF4-4 This object is used to monitor the heat load of indoor unit. 0

3) Objects in the “EnvironmentMonitor” device

 The formula for calculating the instance number is as follows

 Dry-bulb temperature = 1000 × outdoor unit index + 100 × indoor unit index + 1

 Relative humidity = 1000 × outdoor unit index + 100 × indoor unit index + 2

Inst.
No.

Type Name Description
Initial
value

1 ANALOG_INPUT Outdoor_DBT Outdoor dry-bulb temperature. 25
2 ANALOG_INPUT Outdoor_RHMD Outdoor relative humidity. 50
3 ANALOG_INPUT G_Radiation Global horizontal radiation. 0
4 ANALOG_INPUT N_adiation Nocturnal radiation. 0

1101 ANALOG_INPUT DBT_VRF1-1 Dry-bulb temperature of zone at VRF1-1. 25
1102 ANALOG_INPUT RHMD_VRF1-1 Relative humidity of zone at VRF1-1. 50
1201 ANALOG_INPUT DBT_VRF1-2 Dry-bulb temperature of zone at VRF1-2. 25
1202 ANALOG_INPUT RHMD_VRF1-2 Relative humidity of zone at VRF1-2. 50
1301 ANALOG_INPUT DBT_VRF1-3 Dry-bulb temperature of zone at VRF1-3. 25
1302 ANALOG_INPUT RHMD_VRF1-3 Relative humidity of zone at VRF1-3. 50
1401 ANALOG_INPUT DBT_VRF1-4 Dry-bulb temperature of zone at VRF1-4. 25
1402 ANALOG_INPUT RHMD_VRF1-4 Relative humidity of zone at VRF1-4. 50
1501 ANALOG_INPUT DBT_VRF1-5 Dry-bulb temperature of zone at VRF1-5. 25
1502 ANALOG_INPUT RHMD_VRF1-5 Relative humidity of zone at VRF1-5. 50
2101 ANALOG_INPUT DBT_VRF2-1 Dry-bulb temperature of zone at VRF2-1. 25
2102 ANALOG_INPUT RHMD_VRF2-1 Relative humidity of zone at VRF2-1. 50
2201 ANALOG_INPUT DBT_VRF2-2 Dry-bulb temperature of zone at VRF2-2. 25
2202 ANALOG_INPUT RHMD_VRF2-2 Relative humidity of zone at VRF2-2. 50
2301 ANALOG_INPUT DBT_VRF2-3 Dry-bulb temperature of zone at VRF2-3. 25
2302 ANALOG_INPUT RHMD_VRF2-3 Relative humidity of zone at VRF2-3. 50
2401 ANALOG_INPUT DBT_VRF2-4 Dry-bulb temperature of zone at VRF2-4. 25
2402 ANALOG_INPUT RHMD_VRF2-4 Relative humidity of zone at VRF2-4. 50

-A1-9-

3101 ANALOG_INPUT DBT_VRF3-1 Dry-bulb temperature of zone at VRF3-1. 25
3102 ANALOG_INPUT RHMD_VRF3-1 Relative humidity of zone at VRF3-1. 50
3201 ANALOG_INPUT DBT_VRF3-2 Dry-bulb temperature of zone at VRF3-2. 25
3202 ANALOG_INPUT RHMD_VRF3-2 Relative humidity of zone at VRF3-2. 50
3301 ANALOG_INPUT DBT_VRF3-3 Dry-bulb temperature of zone at VRF3-3. 25
3302 ANALOG_INPUT RHMD_VRF3-3 Relative humidity of zone at VRF3-3. 50
3401 ANALOG_INPUT DBT_VRF3-4 Dry-bulb temperature of zone at VRF3-4. 25
3402 ANALOG_INPUT RHMD_VRF3-4 Relative humidity of zone at VRF3-4. 50
3501 ANALOG_INPUT DBT_VRF3-5 Dry-bulb temperature of zone at VRF3-5. 25
3502 ANALOG_INPUT RHMD_VRF3-5 Relative humidity of zone at VRF3-5. 50
4101 ANALOG_INPUT DBT_VRF4-1 Dry-bulb temperature of zone at VRF4-1. 25
4102 ANALOG_INPUT RHMD_VRF4-1 Relative humidity of zone at VRF4-1. 50
4201 ANALOG_INPUT DBT_VRF4-2 Dry-bulb temperature of zone at VRF4-2. 25
4202 ANALOG_INPUT RHMD_VRF4-2 Relative humidity of zone at VRF4-2. 50
4301 ANALOG_INPUT DBT_VRF4-3 Dry-bulb temperature of zone at VRF4-3. 25
4302 ANALOG_INPUT RHMD_VRF4-3 Relative humidity of zone at VRF4-3. 50
4401 ANALOG_INPUT DBT_VRF4-4 Dry-bulb temperature of zone at VRF4-4. 25
4402 ANALOG_INPUT RHMD_VRF4-4 Relative humidity of zone at VRF4-4. 50

4) Objects in the “OccupantMonitor” device

 The formula for calculating the instance number is as follows

 Occupant number of zone = 10000 x tenant index + 1000 x zone index + 1

 Average thermal sensation of occupants in zone = 10000 x tenant index + 1000 × zone index + 3.

 Average clo value of occupants staying in zone = 10000 x tenant index + 1000 × zone index + 4

 Presence or absence of an occupant = 10000 x tenant index + 10 × occupant index + 2

 Thermal sensation of occupant = 10000 x tenant index + 10 × occupant index + 3.

 Clo value of occupant = 10000 x tenant index + 10 × occupant index + 4.

 The following example shows the value when the random number seed (rseed_oprm) for the occupants is set to 1: Changing the random number seed changes the list of

occupants.

Inst.
No.

Type Name Description
Initial
value

10001 ANALOG_INPUT Occupant number Number of occupants stay in office (tenant-1). 0
11001 ANALOG_INPUT Occupant number_ZN1_TNT1 Number of occupants stay in zone-1 of tenant-1 0
11003 ANALOG_INPUT Ave_T_Sensation_ZN1_TNT1 Averaged thermal sensation of zone-1 of tenant-1 0
11004 ANALOG_INPUT Ave_Clo_ZN1_TNT1 Averaged clothing index of zone-1 of tenant-1 0
12001 ANALOG_INPUT Occupant number_ZN2_TNT1 Number of occupants stay in zone-2 of tenant-1 0
12003 ANALOG_INPUT Ave_T_Sensation_ZN2_TNT1 Averaged thermal sensation of zone-2 of tenant-1 0
12004 ANALOG_INPUT Ave_Clo_ZN2_TNT1 Averaged clothing index of zone-2 of tenant-1 0

-A1-10-

13001 ANALOG_INPUT Occupant number_ZN3_TNT1 Number of occupants stay in zone-3 of tenant-1 0
13003 ANALOG_INPUT Ave_T_Sensation_ZN3_TNT1 Averaged thermal sensation of zone-3 of tenant-1 0
13004 ANALOG_INPUT Ave_Clo_ZN3_TNT1 Averaged clothing index of zone-3 of tenant-1 0
14001 ANALOG_INPUT Occupant number_ZN4_TNT1 Number of occupants stay in zone-4 of tenant-1 0
14003 ANALOG_INPUT Ave_T_Sensation_ZN4_TNT1 Averaged thermal sensation of zone-4 of tenant-1 0
14004 ANALOG_INPUT Ave_Clo_ZN4_TNT1 Averaged clothing index of zone-4 of tenant-1 0
15001 ANALOG_INPUT Occupant number_ZN5_TNT1 Number of occupants stay in zone-5 of tenant-1 0
15003 ANALOG_INPUT Ave_T_Sensation_ZN5_TNT1 Averaged thermal sensation of zone-5 of tenant-1 0
15004 ANALOG_INPUT Ave_Clo_ZN5_TNT1 Averaged clothing index of zone-5 of tenant-1 0
16001 ANALOG_INPUT Occupant number_ZN6_TNT1 Number of occupants stay in zone-6 of tenant-1 0
16003 ANALOG_INPUT Ave_T_Sensation_ZN6_TNT1 Averaged thermal sensation of zone-6 of tenant-1 0
16004 ANALOG_INPUT Ave_Clo_ZN6_TNT1 Averaged clothing index of zone-6 of tenant-1 0
17001 ANALOG_INPUT Occupant number_ZN7_TNT1 Number of occupants stay in zone-7 of tenant-1 0
17003 ANALOG_INPUT Ave_T_Sensation_ZN7_TNT1 Averaged thermal sensation of zone-7 of tenant-1 0
17004 ANALOG_INPUT Ave_Clo_ZN7_TNT1 Averaged clothing index of zone-7 of tenant-1 0
18001 ANALOG_INPUT Occupant number_ZN8_TNT1 Number of occupants stay in zone-8 of tenant-1 0
18003 ANALOG_INPUT Ave_T_Sensation_ZN8_TNT1 Averaged thermal sensation of zone-8 of tenant-1 0
18004 ANALOG_INPUT Ave_Clo_ZN8_TNT1 Averaged clothing index of zone-8 of tenant-1 0
19001 ANALOG_INPUT Occupant number_ZN9_TNT1 Number of occupants stay in zone-9 of tenant-1 0
19003 ANALOG_INPUT Ave_T_Sensation_ZN9_TNT1 Averaged thermal sensation of zone-9 of tenant-1 0
19004 ANALOG_INPUT Ave_Clo_ZN9_TNT1 Averaged clothing index of zone-9 of tenant-1 0
10012 BINARY_INPUT Availability_OC_1 Availability of occupant-1 of tenant-1 (Dana Hattersley) 0
10013 ANALOG_INPUT T_Sensation_OC_1 Thermal sensation of occupant-1 of tenant-1 (Dana Hattersley) 0
10014 ANALOG_INPUT Clo_OC_1 Clothing index of occupant-1 of tenant-1 (Dana Hattersley) 0
10022 BINARY_INPUT Availability_OC_2 Availability of occupant-2 of tenant-1 (Humphrey Lock) 0
10023 ANALOG_INPUT T_Sensation_OC_2 Thermal sensation of occupant-2 of tenant-1 (Humphrey Lock) 0
10024 ANALOG_INPUT Clo_OC_2 Clothing index of occupant-2 of tenant-1 (Humphrey Lock) 0
10032 BINARY_INPUT Availability_OC_3 Availability of occupant-3 of tenant-1 (Cassie Harris) 0
10033 ANALOG_INPUT T_Sensation_OC_3 Thermal sensation of occupant-3 of tenant-1 (Cassie Harris) 0
10034 ANALOG_INPUT Clo_OC_3 Clothing index of occupant-3 of tenant-1 (Cassie Harris) 0
10042 BINARY_INPUT Availability_OC_4 Availability of occupant-4 of tenant-1 (Cecil Topping) 0
10043 ANALOG_INPUT T_Sensation_OC_4 Thermal sensation of occupant-4 of tenant-1 (Cecil Topping) 0
10044 ANALOG_INPUT Clo_OC_4 Clothing index of occupant-4 of tenant-1 (Cecil Topping) 0
10052 BINARY_INPUT Availability_OC_5 Availability of occupant-5 of tenant-1 (Laila Black) 0
10053 ANALOG_INPUT T_Sensation_OC_5 Thermal sensation of occupant-5 of tenant-1 (Laila Black) 0
10054 ANALOG_INPUT Clo_OC_5 Clothing index of occupant-5 of tenant-1 (Laila Black) 0
10062 BINARY_INPUT Availability_OC_6 Availability of occupant-6 of tenant-1 (Clive Toolson) 0
10063 ANALOG_INPUT T_Sensation_OC_6 Thermal sensation of occupant-6 of tenant-1 (Clive Toolson) 0
10064 ANALOG_INPUT Clo_OC_6 Clothing index of occupant-6 of tenant-1 (Clive Toolson) 0
10072 BINARY_INPUT Availability_OC_7 Availability of occupant-7 of tenant-1 (Monique Cartwright) 0
10073 ANALOG_INPUT T_Sensation_OC_7 Thermal sensation of occupant-7 of tenant-1 (Monique Cartwright) 0
10074 ANALOG_INPUT Clo_OC_7 Clothing index of occupant-7 of tenant-1 (Monique Cartwright) 0
10082 BINARY_INPUT Availability_OC_8 Availability of occupant-8 of tenant-1 (Josiah Conder) 0
10083 ANALOG_INPUT T_Sensation_OC_8 Thermal sensation of occupant-8 of tenant-1 (Josiah Conder) 0
10084 ANALOG_INPUT Clo_OC_8 Clothing index of occupant-8 of tenant-1 (Josiah Conder) 0
10092 BINARY_INPUT Availability_OC_9 Availability of occupant-9 of tenant-1 (Phil Barker) 0
10093 ANALOG_INPUT T_Sensation_OC_9 Thermal sensation of occupant-9 of tenant-1 (Phil Barker) 0
10094 ANALOG_INPUT Clo_OC_9 Clothing index of occupant-9 of tenant-1 (Phil Barker) 0

-A1-11-

10102 BINARY_INPUT Availability_OC_10 Availability of occupant-10 of tenant-1 (Meredith Baldridge) 0
10103 ANALOG_INPUT T_Sensation_OC_10 Thermal sensation of occupant-10 of tenant-1 (Meredith Baldridge) 0
10104 ANALOG_INPUT Clo_OC_10 Clothing index of occupant-10 of tenant-1 (Meredith Baldridge) 0
10112 BINARY_INPUT Availability_OC_11 Availability of occupant-11 of tenant-1 (Angelica Roundell) 0
10113 ANALOG_INPUT T_Sensation_OC_11 Thermal sensation of occupant-11 of tenant-1 (Angelica Roundell) 0
10114 ANALOG_INPUT Clo_OC_11 Clothing index of occupant-11 of tenant-1 (Angelica Roundell) 0
10122 BINARY_INPUT Availability_OC_12 Availability of occupant-12 of tenant-1 (Hermann Rietschel) 0
10123 ANALOG_INPUT T_Sensation_OC_12 Thermal sensation of occupant-12 of tenant-1 (Hermann Rietschel) 0
10124 ANALOG_INPUT Clo_OC_12 Clothing index of occupant-12 of tenant-1 (Hermann Rietschel) 0
10132 BINARY_INPUT Availability_OC_13 Availability of occupant-13 of tenant-1 (Allyn Galbraith) 0
10133 ANALOG_INPUT T_Sensation_OC_13 Thermal sensation of occupant-13 of tenant-1 (Allyn Galbraith) 0
10134 ANALOG_INPUT Clo_OC_13 Clothing index of occupant-13 of tenant-1 (Allyn Galbraith) 0
10142 BINARY_INPUT Availability_OC_14 Availability of occupant-14 of tenant-1 (Wallace Sabine) 0
10143 ANALOG_INPUT T_Sensation_OC_14 Thermal sensation of occupant-14 of tenant-1 (Wallace Sabine) 0
10144 ANALOG_INPUT Clo_OC_14 Clothing index of occupant-14 of tenant-1 (Wallace Sabine) 0
10152 BINARY_INPUT Availability_OC_15 Availability of occupant-15 of tenant-1 (David Midwinter) 0
10153 ANALOG_INPUT T_Sensation_OC_15 Thermal sensation of occupant-15 of tenant-1 (David Midwinter) 0
10154 ANALOG_INPUT Clo_OC_15 Clothing index of occupant-15 of tenant-1 (David Midwinter) 0
10162 BINARY_INPUT Availability_OC_16 Availability of occupant-16 of tenant-1 (Rowland Rouse) 0
10163 ANALOG_INPUT T_Sensation_OC_16 Thermal sensation of occupant-16 of tenant-1 (Rowland Rouse) 0
10164 ANALOG_INPUT Clo_OC_16 Clothing index of occupant-16 of tenant-1 (Rowland Rouse) 0
10172 BINARY_INPUT Availability_OC_17 Availability of occupant-17 of tenant-1 (Yuichiro Iio) 0
10173 ANALOG_INPUT T_Sensation_OC_17 Thermal sensation of occupant-17 of tenant-1 (Yuichiro Iio) 0
10174 ANALOG_INPUT Clo_OC_17 Clothing index of occupant-17 of tenant-1 (Yuichiro Iio) 0
10182 BINARY_INPUT Availability_OC_18 Availability of occupant-18 of tenant-1 (Zachariah Venables-Vernon-Harcourt) 0
10183 ANALOG_INPUT T_Sensation_OC_18 Thermal sensation of occupant-18 of tenant-1 (Zachariah Venables-Vernon-Harcourt) 0
10184 ANALOG_INPUT Clo_OC_18 Clothing index of occupant-18 of tenant-1 (Zachariah Venables-Vernon-Harcourt) 0
10192 BINARY_INPUT Availability_OC_19 Availability of occupant-19 of tenant-1 (Allyn Lympany) 0
10193 ANALOG_INPUT T_Sensation_OC_19 Thermal sensation of occupant-19 of tenant-1 (Allyn Lympany) 0
10194 ANALOG_INPUT Clo_OC_19 Clothing index of occupant-19 of tenant-1 (Allyn Lympany) 0
10202 BINARY_INPUT Availability_OC_20 Availability of occupant-20 of tenant-1 (Daiki Kobayashi) 0
10203 ANALOG_INPUT T_Sensation_OC_20 Thermal sensation of occupant-20 of tenant-1 (Daiki Kobayashi) 0
10204 ANALOG_INPUT Clo_OC_20 Clothing index of occupant-20 of tenant-1 (Daiki Kobayashi) 0
10212 BINARY_INPUT Availability_OC_21 Availability of occupant-21 of tenant-1 (Yvonne Murrills) 0
10213 ANALOG_INPUT T_Sensation_OC_21 Thermal sensation of occupant-21 of tenant-1 (Yvonne Murrills) 0
10214 ANALOG_INPUT Clo_OC_21 Clothing index of occupant-21 of tenant-1 (Yvonne Murrills) 0
10222 BINARY_INPUT Availability_OC_22 Availability of occupant-22 of tenant-1 (Vince Cok) 0
10223 ANALOG_INPUT T_Sensation_OC_22 Thermal sensation of occupant-22 of tenant-1 (Vince Cok) 0
10224 ANALOG_INPUT Clo_OC_22 Clothing index of occupant-22 of tenant-1 (Vince Cok) 0
10232 BINARY_INPUT Availability_OC_23 Availability of occupant-23 of tenant-1 (Niccolo Giannetti) 0
10233 ANALOG_INPUT T_Sensation_OC_23 Thermal sensation of occupant-23 of tenant-1 (Niccolo Giannetti) 0
10234 ANALOG_INPUT Clo_OC_23 Clothing index of occupant-23 of tenant-1 (Niccolo Giannetti) 0
10242 BINARY_INPUT Availability_OC_24 Availability of occupant-24 of tenant-1 (Elizabeth Roundell) 0
10243 ANALOG_INPUT T_Sensation_OC_24 Thermal sensation of occupant-24 of tenant-1 (Elizabeth Roundell) 0
10244 ANALOG_INPUT Clo_OC_24 Clothing index of occupant-24 of tenant-1 (Elizabeth Roundell) 0
10252 BINARY_INPUT Availability_OC_25 Availability of occupant-25 of tenant-1 (Nicola Turnbull) 0
10253 ANALOG_INPUT T_Sensation_OC_25 Thermal sensation of occupant-25 of tenant-1 (Nicola Turnbull) 0
10254 ANALOG_INPUT Clo_OC_25 Clothing index of occupant-25 of tenant-1 (Nicola Turnbull) 0

-A1-12-

10262 BINARY_INPUT Availability_OC_26 Availability of occupant-26 of tenant-1 (Masahi Momota) 0
10263 ANALOG_INPUT T_Sensation_OC_26 Thermal sensation of occupant-26 of tenant-1 (Masahi Momota) 0
10264 ANALOG_INPUT Clo_OC_26 Clothing index of occupant-26 of tenant-1 (Masahi Momota) 0
10272 BINARY_INPUT Availability_OC_27 Availability of occupant-27 of tenant-1 (Jade Mollison) 0
10273 ANALOG_INPUT T_Sensation_OC_27 Thermal sensation of occupant-27 of tenant-1 (Jade Mollison) 0
10274 ANALOG_INPUT Clo_OC_27 Clothing index of occupant-27 of tenant-1 (Jade Mollison) 0
10282 BINARY_INPUT Availability_OC_28 Availability of occupant-28 of tenant-1 (Linus Hanley) 0
10283 ANALOG_INPUT T_Sensation_OC_28 Thermal sensation of occupant-28 of tenant-1 (Linus Hanley) 0
10284 ANALOG_INPUT Clo_OC_28 Clothing index of occupant-28 of tenant-1 (Linus Hanley) 0
10292 BINARY_INPUT Availability_OC_29 Availability of occupant-29 of tenant-1 (Valentine Elliston) 0
10293 ANALOG_INPUT T_Sensation_OC_29 Thermal sensation of occupant-29 of tenant-1 (Valentine Elliston) 0
10294 ANALOG_INPUT Clo_OC_29 Clothing index of occupant-29 of tenant-1 (Valentine Elliston) 0
10302 BINARY_INPUT Availability_OC_30 Availability of occupant-30 of tenant-1 (Roman Steele) 0
10303 ANALOG_INPUT T_Sensation_OC_30 Thermal sensation of occupant-30 of tenant-1 (Roman Steele) 0
10304 ANALOG_INPUT Clo_OC_30 Clothing index of occupant-30 of tenant-1 (Roman Steele) 0
10312 BINARY_INPUT Availability_OC_31 Availability of occupant-31 of tenant-1 (Savannah Biggs) 0
10313 ANALOG_INPUT T_Sensation_OC_31 Thermal sensation of occupant-31 of tenant-1 (Savannah Biggs) 0
10314 ANALOG_INPUT Clo_OC_31 Clothing index of occupant-31 of tenant-1 (Savannah Biggs) 0
10322 BINARY_INPUT Availability_OC_32 Availability of occupant-32 of tenant-1 (Howard Astley) 0
10323 ANALOG_INPUT T_Sensation_OC_32 Thermal sensation of occupant-32 of tenant-1 (Howard Astley) 0
10324 ANALOG_INPUT Clo_OC_32 Clothing index of occupant-32 of tenant-1 (Howard Astley) 0
10332 BINARY_INPUT Availability_OC_33 Availability of occupant-33 of tenant-1 (Masato Miyata) 0
10333 ANALOG_INPUT T_Sensation_OC_33 Thermal sensation of occupant-33 of tenant-1 (Masato Miyata) 0
10334 ANALOG_INPUT Clo_OC_33 Clothing index of occupant-33 of tenant-1 (Masato Miyata) 0
10342 BINARY_INPUT Availability_OC_34 Availability of occupant-34 of tenant-1 (Aileen Winder) 0
10343 ANALOG_INPUT T_Sensation_OC_34 Thermal sensation of occupant-34 of tenant-1 (Aileen Winder) 0
10344 ANALOG_INPUT Clo_OC_34 Clothing index of occupant-34 of tenant-1 (Aileen Winder) 0
10352 BINARY_INPUT Availability_OC_35 Availability of occupant-35 of tenant-1 (Landon Ackroyd) 0
10353 ANALOG_INPUT T_Sensation_OC_35 Thermal sensation of occupant-35 of tenant-1 (Landon Ackroyd) 0
10354 ANALOG_INPUT Clo_OC_35 Clothing index of occupant-35 of tenant-1 (Landon Ackroyd) 0
10362 BINARY_INPUT Availability_OC_36 Availability of occupant-36 of tenant-1 (Leo Quantrill) 0
10363 ANALOG_INPUT T_Sensation_OC_36 Thermal sensation of occupant-36 of tenant-1 (Leo Quantrill) 0
10364 ANALOG_INPUT Clo_OC_36 Clothing index of occupant-36 of tenant-1 (Leo Quantrill) 0
10372 BINARY_INPUT Availability_OC_37 Availability of occupant-37 of tenant-1 (Eisuke Togashi) 0
10373 ANALOG_INPUT T_Sensation_OC_37 Thermal sensation of occupant-37 of tenant-1 (Eisuke Togashi) 0
10374 ANALOG_INPUT Clo_OC_37 Clothing index of occupant-37 of tenant-1 (Eisuke Togashi) 0
10382 BINARY_INPUT Availability_OC_38 Availability of occupant-38 of tenant-1 (Wilhelmina Chalmers) 0
10383 ANALOG_INPUT T_Sensation_OC_38 Thermal sensation of occupant-38 of tenant-1 (Wilhelmina Chalmers) 0
10384 ANALOG_INPUT Clo_OC_38 Clothing index of occupant-38 of tenant-1 (Wilhelmina Chalmers) 0
20001 ANALOG_INPUT Occupant number Number of occupants stay in office (tenant-2). 0
21001 ANALOG_INPUT Occupant number_ZN1_TNT2 Number of occupants stay in zone-1 of tenant-2 0
21003 ANALOG_INPUT Ave_T_Sensation_ZN1_TNT2 Averaged thermal sensation of zone-1 of tenant-2 0
21004 ANALOG_INPUT Ave_Clo_ZN1_TNT2 Averaged clothing index of zone-1 of tenant-2 0
22001 ANALOG_INPUT Occupant number_ZN2_TNT2 Number of occupants stay in zone-2 of tenant-2 0
22003 ANALOG_INPUT Ave_T_Sensation_ZN2_TNT2 Averaged thermal sensation of zone-2 of tenant-2 0
22004 ANALOG_INPUT Ave_Clo_ZN2_TNT2 Averaged clothing index of zone-2 of tenant-2 0
23001 ANALOG_INPUT Occupant number_ZN3_TNT2 Number of occupants stay in zone-3 of tenant-2 0
23003 ANALOG_INPUT Ave_T_Sensation_ZN3_TNT2 Averaged thermal sensation of zone-3 of tenant-2 0

-A1-13-

23004 ANALOG_INPUT Ave_Clo_ZN3_TNT2 Averaged clothing index of zone-3 of tenant-2 0
24001 ANALOG_INPUT Occupant number_ZN4_TNT2 Number of occupants stay in zone-4 of tenant-2 0
24003 ANALOG_INPUT Ave_T_Sensation_ZN4_TNT2 Averaged thermal sensation of zone-4 of tenant-2 0
24004 ANALOG_INPUT Ave_Clo_ZN4_TNT2 Averaged clothing index of zone-4 of tenant-2 0
25001 ANALOG_INPUT Occupant number_ZN5_TNT2 Number of occupants stay in zone-5 of tenant-2 0
25003 ANALOG_INPUT Ave_T_Sensation_ZN5_TNT2 Averaged thermal sensation of zone-5 of tenant-2 0
25004 ANALOG_INPUT Ave_Clo_ZN5_TNT2 Averaged clothing index of zone-5 of tenant-2 0
26001 ANALOG_INPUT Occupant number_ZN6_TNT2 Number of occupants stay in zone-6 of tenant-2 0
26003 ANALOG_INPUT Ave_T_Sensation_ZN6_TNT2 Averaged thermal sensation of zone-6 of tenant-2 0
26004 ANALOG_INPUT Ave_Clo_ZN6_TNT2 Averaged clothing index of zone-6 of tenant-2 0
27001 ANALOG_INPUT Occupant number_ZN7_TNT2 Number of occupants stay in zone-7 of tenant-2 0
27003 ANALOG_INPUT Ave_T_Sensation_ZN7_TNT2 Averaged thermal sensation of zone-7 of tenant-2 0
27004 ANALOG_INPUT Ave_Clo_ZN7_TNT2 Averaged clothing index of zone-7 of tenant-2 0
28001 ANALOG_INPUT Occupant number_ZN8_TNT2 Number of occupants stay in zone-8 of tenant-2 0
28003 ANALOG_INPUT Ave_T_Sensation_ZN8_TNT2 Averaged thermal sensation of zone-8 of tenant-2 0
28004 ANALOG_INPUT Ave_Clo_ZN8_TNT2 Averaged clothing index of zone-8 of tenant-2 0
29001 ANALOG_INPUT Occupant number_ZN9_TNT2 Number of occupants stay in zone-9 of tenant-2 0
29003 ANALOG_INPUT Ave_T_Sensation_ZN9_TNT2 Averaged thermal sensation of zone-9 of tenant-2 0
29004 ANALOG_INPUT Ave_Clo_ZN9_TNT2 Averaged clothing index of zone-9 of tenant-2 0
20012 BINARY_INPUT Availability_OC_1 Availability of occupant-1 of tenant-2 (Kim Collingwood) 0
20013 ANALOG_INPUT T_Sensation_OC_1 Thermal sensation of occupant-1 of tenant-2 (Kim Collingwood) 0
20014 ANALOG_INPUT Clo_OC_1 Clothing index of occupant-1 of tenant-2 (Kim Collingwood) 0
20022 BINARY_INPUT Availability_OC_2 Availability of occupant-2 of tenant-2 (Takahiro Ueno) 0
20023 ANALOG_INPUT T_Sensation_OC_2 Thermal sensation of occupant-2 of tenant-2 (Takahiro Ueno) 0
20024 ANALOG_INPUT Clo_OC_2 Clothing index of occupant-2 of tenant-2 (Takahiro Ueno) 0
20032 BINARY_INPUT Availability_OC_3 Availability of occupant-3 of tenant-2 (Kimberly Holder) 0
20033 ANALOG_INPUT T_Sensation_OC_3 Thermal sensation of occupant-3 of tenant-2 (Kimberly Holder) 0
20034 ANALOG_INPUT Clo_OC_3 Clothing index of occupant-3 of tenant-2 (Kimberly Holder) 0
20042 BINARY_INPUT Availability_OC_4 Availability of occupant-4 of tenant-2 (Sophie Coffin) 0
20043 ANALOG_INPUT T_Sensation_OC_4 Thermal sensation of occupant-4 of tenant-2 (Sophie Coffin) 0
20044 ANALOG_INPUT Clo_OC_4 Clothing index of occupant-4 of tenant-2 (Sophie Coffin) 0
20052 BINARY_INPUT Availability_OC_5 Availability of occupant-5 of tenant-2 (Rolla Carpenter) 0
20053 ANALOG_INPUT T_Sensation_OC_5 Thermal sensation of occupant-5 of tenant-2 (Rolla Carpenter) 0
20054 ANALOG_INPUT Clo_OC_5 Clothing index of occupant-5 of tenant-2 (Rolla Carpenter) 0
20062 BINARY_INPUT Availability_OC_6 Availability of occupant-6 of tenant-2 (Pauline Gooding) 0
20063 ANALOG_INPUT T_Sensation_OC_6 Thermal sensation of occupant-6 of tenant-2 (Pauline Gooding) 0
20064 ANALOG_INPUT Clo_OC_6 Clothing index of occupant-6 of tenant-2 (Pauline Gooding) 0
20072 BINARY_INPUT Availability_OC_7 Availability of occupant-7 of tenant-2 (Sei Nagashima) 0
20073 ANALOG_INPUT T_Sensation_OC_7 Thermal sensation of occupant-7 of tenant-2 (Sei Nagashima) 0
20074 ANALOG_INPUT Clo_OC_7 Clothing index of occupant-7 of tenant-2 (Sei Nagashima) 0
20082 BINARY_INPUT Availability_OC_8 Availability of occupant-8 of tenant-2 (Louisa Street) 0
20083 ANALOG_INPUT T_Sensation_OC_8 Thermal sensation of occupant-8 of tenant-2 (Louisa Street) 0
20084 ANALOG_INPUT Clo_OC_8 Clothing index of occupant-8 of tenant-2 (Louisa Street) 0
20092 BINARY_INPUT Availability_OC_9 Availability of occupant-9 of tenant-2 (Lindsay Buckler) 0
20093 ANALOG_INPUT T_Sensation_OC_9 Thermal sensation of occupant-9 of tenant-2 (Lindsay Buckler) 0
20094 ANALOG_INPUT Clo_OC_9 Clothing index of occupant-9 of tenant-2 (Lindsay Buckler) 0
20102 BINARY_INPUT Availability_OC_10 Availability of occupant-10 of tenant-2 (Katsuyuki Edahiro) 0
20103 ANALOG_INPUT T_Sensation_OC_10 Thermal sensation of occupant-10 of tenant-2 (Katsuyuki Edahiro) 0

-A1-14-

20104 ANALOG_INPUT Clo_OC_10 Clothing index of occupant-10 of tenant-2 (Katsuyuki Edahiro) 0
20112 BINARY_INPUT Availability_OC_11 Availability of occupant-11 of tenant-2 (Carey Blanchfield) 0
20113 ANALOG_INPUT T_Sensation_OC_11 Thermal sensation of occupant-11 of tenant-2 (Carey Blanchfield) 0
20114 ANALOG_INPUT Clo_OC_11 Clothing index of occupant-11 of tenant-2 (Carey Blanchfield) 0
20122 BINARY_INPUT Availability_OC_12 Availability of occupant-12 of tenant-2 (Cordelia Woodson) 0
20123 ANALOG_INPUT T_Sensation_OC_12 Thermal sensation of occupant-12 of tenant-2 (Cordelia Woodson) 0
20124 ANALOG_INPUT Clo_OC_12 Clothing index of occupant-12 of tenant-2 (Cordelia Woodson) 0
20132 BINARY_INPUT Availability_OC_13 Availability of occupant-13 of tenant-2 (Theodore Place) 0
20133 ANALOG_INPUT T_Sensation_OC_13 Thermal sensation of occupant-13 of tenant-2 (Theodore Place) 0
20134 ANALOG_INPUT Clo_OC_13 Clothing index of occupant-13 of tenant-2 (Theodore Place) 0
20142 BINARY_INPUT Availability_OC_14 Availability of occupant-14 of tenant-2 (Tomoya Katayama) 0
20143 ANALOG_INPUT T_Sensation_OC_14 Thermal sensation of occupant-14 of tenant-2 (Tomoya Katayama) 0
20144 ANALOG_INPUT Clo_OC_14 Clothing index of occupant-14 of tenant-2 (Tomoya Katayama) 0
20152 BINARY_INPUT Availability_OC_15 Availability of occupant-15 of tenant-2 (Michaela Nutter) 0
20153 ANALOG_INPUT T_Sensation_OC_15 Thermal sensation of occupant-15 of tenant-2 (Michaela Nutter) 0
20154 ANALOG_INPUT Clo_OC_15 Clothing index of occupant-15 of tenant-2 (Michaela Nutter) 0
20162 BINARY_INPUT Availability_OC_16 Availability of occupant-16 of tenant-2 (Hajime Ogata) 0
20163 ANALOG_INPUT T_Sensation_OC_16 Thermal sensation of occupant-16 of tenant-2 (Hajime Ogata) 0
20164 ANALOG_INPUT Clo_OC_16 Clothing index of occupant-16 of tenant-2 (Hajime Ogata) 0
20172 BINARY_INPUT Availability_OC_17 Availability of occupant-17 of tenant-2 (Lewis Swaine) 0
20173 ANALOG_INPUT T_Sensation_OC_17 Thermal sensation of occupant-17 of tenant-2 (Lewis Swaine) 0
20174 ANALOG_INPUT Clo_OC_17 Clothing index of occupant-17 of tenant-2 (Lewis Swaine) 0
20182 BINARY_INPUT Availability_OC_18 Availability of occupant-18 of tenant-2 (Valentine Wellington) 0
20183 ANALOG_INPUT T_Sensation_OC_18 Thermal sensation of occupant-18 of tenant-2 (Valentine Wellington) 0
20184 ANALOG_INPUT Clo_OC_18 Clothing index of occupant-18 of tenant-2 (Valentine Wellington) 0
20192 BINARY_INPUT Availability_OC_19 Availability of occupant-19 of tenant-2 (Stephanie Hines) 0
20193 ANALOG_INPUT T_Sensation_OC_19 Thermal sensation of occupant-19 of tenant-2 (Stephanie Hines) 0
20194 ANALOG_INPUT Clo_OC_19 Clothing index of occupant-19 of tenant-2 (Stephanie Hines) 0
20202 BINARY_INPUT Availability_OC_20 Availability of occupant-20 of tenant-2 (Leonard Hill) 0
20203 ANALOG_INPUT T_Sensation_OC_20 Thermal sensation of occupant-20 of tenant-2 (Leonard Hill) 0
20204 ANALOG_INPUT Clo_OC_20 Clothing index of occupant-20 of tenant-2 (Leonard Hill) 0
20212 BINARY_INPUT Availability_OC_21 Availability of occupant-21 of tenant-2 (Hisao Ayame) 0
20213 ANALOG_INPUT T_Sensation_OC_21 Thermal sensation of occupant-21 of tenant-2 (Hisao Ayame) 0
20214 ANALOG_INPUT Clo_OC_21 Clothing index of occupant-21 of tenant-2 (Hisao Ayame) 0
20222 BINARY_INPUT Availability_OC_22 Availability of occupant-22 of tenant-2 (Masanari Ukai) 0
20223 ANALOG_INPUT T_Sensation_OC_22 Thermal sensation of occupant-22 of tenant-2 (Masanari Ukai) 0
20224 ANALOG_INPUT Clo_OC_22 Clothing index of occupant-22 of tenant-2 (Masanari Ukai) 0
20232 BINARY_INPUT Availability_OC_23 Availability of occupant-23 of tenant-2 (Pamela Stackhouse) 0
20233 ANALOG_INPUT T_Sensation_OC_23 Thermal sensation of occupant-23 of tenant-2 (Pamela Stackhouse) 0
20234 ANALOG_INPUT Clo_OC_23 Clothing index of occupant-23 of tenant-2 (Pamela Stackhouse) 0
20242 BINARY_INPUT Availability_OC_24 Availability of occupant-24 of tenant-2 (William Trollope) 0
20243 ANALOG_INPUT T_Sensation_OC_24 Thermal sensation of occupant-24 of tenant-2 (William Trollope) 0
20244 ANALOG_INPUT Clo_OC_24 Clothing index of occupant-24 of tenant-2 (William Trollope) 0
20252 BINARY_INPUT Availability_OC_25 Availability of occupant-25 of tenant-2 (Jasmine Flowers) 0
20253 ANALOG_INPUT T_Sensation_OC_25 Thermal sensation of occupant-25 of tenant-2 (Jasmine Flowers) 0
20254 ANALOG_INPUT Clo_OC_25 Clothing index of occupant-25 of tenant-2 (Jasmine Flowers) 0
20262 BINARY_INPUT Availability_OC_26 Availability of occupant-26 of tenant-2 (Constantin Yaglou) 0
20263 ANALOG_INPUT T_Sensation_OC_26 Thermal sensation of occupant-26 of tenant-2 (Constantin Yaglou) 0

-A1-15-

20264 ANALOG_INPUT Clo_OC_26 Clothing index of occupant-26 of tenant-2 (Constantin Yaglou) 0
20272 BINARY_INPUT Availability_OC_27 Availability of occupant-27 of tenant-2 (Edwin Gwatkin) 0
20273 ANALOG_INPUT T_Sensation_OC_27 Thermal sensation of occupant-27 of tenant-2 (Edwin Gwatkin) 0
20274 ANALOG_INPUT Clo_OC_27 Clothing index of occupant-27 of tenant-2 (Edwin Gwatkin) 0
20282 BINARY_INPUT Availability_OC_28 Availability of occupant-28 of tenant-2 (Jeff Northcutt) 0
20283 ANALOG_INPUT T_Sensation_OC_28 Thermal sensation of occupant-28 of tenant-2 (Jeff Northcutt) 0
20284 ANALOG_INPUT Clo_OC_28 Clothing index of occupant-28 of tenant-2 (Jeff Northcutt) 0
20292 BINARY_INPUT Availability_OC_29 Availability of occupant-29 of tenant-2 (Pat Hightower) 0
20293 ANALOG_INPUT T_Sensation_OC_29 Thermal sensation of occupant-29 of tenant-2 (Pat Hightower) 0
20294 ANALOG_INPUT Clo_OC_29 Clothing index of occupant-29 of tenant-2 (Pat Hightower) 0
20302 BINARY_INPUT Availability_OC_30 Availability of occupant-30 of tenant-2 (Brendon Byrd) 0
20303 ANALOG_INPUT T_Sensation_OC_30 Thermal sensation of occupant-30 of tenant-2 (Brendon Byrd) 0
20304 ANALOG_INPUT Clo_OC_30 Clothing index of occupant-30 of tenant-2 (Brendon Byrd) 0
20312 BINARY_INPUT Availability_OC_31 Availability of occupant-31 of tenant-2 (Abel Cleverly) 0
20313 ANALOG_INPUT T_Sensation_OC_31 Thermal sensation of occupant-31 of tenant-2 (Abel Cleverly) 0
20314 ANALOG_INPUT Clo_OC_31 Clothing index of occupant-31 of tenant-2 (Abel Cleverly) 0
20322 BINARY_INPUT Availability_OC_32 Availability of occupant-32 of tenant-2 (Daniel Calladine) 0
20323 ANALOG_INPUT T_Sensation_OC_32 Thermal sensation of occupant-32 of tenant-2 (Daniel Calladine) 0
20324 ANALOG_INPUT Clo_OC_32 Clothing index of occupant-32 of tenant-2 (Daniel Calladine) 0
20332 BINARY_INPUT Availability_OC_33 Availability of occupant-33 of tenant-2 (Makoto Satoh) 0
20333 ANALOG_INPUT T_Sensation_OC_33 Thermal sensation of occupant-33 of tenant-2 (Makoto Satoh) 0
20334 ANALOG_INPUT Clo_OC_33 Clothing index of occupant-33 of tenant-2 (Makoto Satoh) 0
20342 BINARY_INPUT Availability_OC_34 Availability of occupant-34 of tenant-2 (Walter Heston) 0
20343 ANALOG_INPUT T_Sensation_OC_34 Thermal sensation of occupant-34 of tenant-2 (Walter Heston) 0
20344 ANALOG_INPUT Clo_OC_34 Clothing index of occupant-34 of tenant-2 (Walter Heston) 0
20352 BINARY_INPUT Availability_OC_35 Availability of occupant-35 of tenant-2 (Robin Hurst) 0
20353 ANALOG_INPUT T_Sensation_OC_35 Thermal sensation of occupant-35 of tenant-2 (Robin Hurst) 0
20354 ANALOG_INPUT Clo_OC_35 Clothing index of occupant-35 of tenant-2 (Robin Hurst) 0
20362 BINARY_INPUT Availability_OC_36 Availability of occupant-36 of tenant-2 (Rick Dobbs) 0
20363 ANALOG_INPUT T_Sensation_OC_36 Thermal sensation of occupant-36 of tenant-2 (Rick Dobbs) 0
20364 ANALOG_INPUT Clo_OC_36 Clothing index of occupant-36 of tenant-2 (Rick Dobbs) 0
20372 BINARY_INPUT Availability_OC_37 Availability of occupant-37 of tenant-2 (Oswald Coffin) 0
20373 ANALOG_INPUT T_Sensation_OC_37 Thermal sensation of occupant-37 of tenant-2 (Oswald Coffin) 0
20374 ANALOG_INPUT Clo_OC_37 Clothing index of occupant-37 of tenant-2 (Oswald Coffin) 0
20382 BINARY_INPUT Availability_OC_38 Availability of occupant-38 of tenant-2 (Godfrey Doust) 0
20383 ANALOG_INPUT T_Sensation_OC_38 Thermal sensation of occupant-38 of tenant-2 (Godfrey Doust) 0
20384 ANALOG_INPUT Clo_OC_38 Clothing index of occupant-38 of tenant-2 (Godfrey Doust) 0
20392 BINARY_INPUT Availability_OC_39 Availability of occupant-39 of tenant-2 (Hiroyuki Hatada) 0
20393 ANALOG_INPUT T_Sensation_OC_39 Thermal sensation of occupant-39 of tenant-2 (Hiroyuki Hatada) 0
20394 ANALOG_INPUT Clo_OC_39 Clothing index of occupant-39 of tenant-2 (Hiroyuki Hatada) 0
20402 BINARY_INPUT Availability_OC_40 Availability of occupant-40 of tenant-2 (Lindsey Ottley) 0
20403 ANALOG_INPUT T_Sensation_OC_40 Thermal sensation of occupant-40 of tenant-2 (Lindsey Ottley) 0
20404 ANALOG_INPUT Clo_OC_40 Clothing index of occupant-40 of tenant-2 (Lindsey Ottley) 0
20412 BINARY_INPUT Availability_OC_41 Availability of occupant-41 of tenant-2 (Malcolm Watt) 0
20413 ANALOG_INPUT T_Sensation_OC_41 Thermal sensation of occupant-41 of tenant-2 (Malcolm Watt) 0
20414 ANALOG_INPUT Clo_OC_41 Clothing index of occupant-41 of tenant-2 (Malcolm Watt) 0
20422 BINARY_INPUT Availability_OC_42 Availability of occupant-42 of tenant-2 (Elton Vickers) 0
20423 ANALOG_INPUT T_Sensation_OC_42 Thermal sensation of occupant-42 of tenant-2 (Elton Vickers) 0

-A1-16-

20424 ANALOG_INPUT Clo_OC_42 Clothing index of occupant-42 of tenant-2 (Elton Vickers) 0
20432 BINARY_INPUT Availability_OC_43 Availability of occupant-43 of tenant-2 (Rodney Benge) 0
20433 ANALOG_INPUT T_Sensation_OC_43 Thermal sensation of occupant-43 of tenant-2 (Rodney Benge) 0
20434 ANALOG_INPUT Clo_OC_43 Clothing index of occupant-43 of tenant-2 (Rodney Benge) 0
20442 BINARY_INPUT Availability_OC_44 Availability of occupant-44 of tenant-2 (Stanley Neilson) 0
20443 ANALOG_INPUT T_Sensation_OC_44 Thermal sensation of occupant-44 of tenant-2 (Stanley Neilson) 0
20444 ANALOG_INPUT Clo_OC_44 Clothing index of occupant-44 of tenant-2 (Stanley Neilson) 0
20452 BINARY_INPUT Availability_OC_45 Availability of occupant-45 of tenant-2 (Willis Carrier) 0
20453 ANALOG_INPUT T_Sensation_OC_45 Thermal sensation of occupant-45 of tenant-2 (Willis Carrier) 0
20454 ANALOG_INPUT Clo_OC_45 Clothing index of occupant-45 of tenant-2 (Willis Carrier) 0
20462 BINARY_INPUT Availability_OC_46 Availability of occupant-46 of tenant-2 (Emma Botting) 0
20463 ANALOG_INPUT T_Sensation_OC_46 Thermal sensation of occupant-46 of tenant-2 (Emma Botting) 0
20464 ANALOG_INPUT Clo_OC_46 Clothing index of occupant-46 of tenant-2 (Emma Botting) 0
20472 BINARY_INPUT Availability_OC_47 Availability of occupant-47 of tenant-2 (Wanda Madgwick) 0
20473 ANALOG_INPUT T_Sensation_OC_47 Thermal sensation of occupant-47 of tenant-2 (Wanda Madgwick) 0
20474 ANALOG_INPUT Clo_OC_47 Clothing index of occupant-47 of tenant-2 (Wanda Madgwick) 0
20482 BINARY_INPUT Availability_OC_48 Availability of occupant-48 of tenant-2 (Quincy Windsor-Clive) 0
20483 ANALOG_INPUT T_Sensation_OC_48 Thermal sensation of occupant-48 of tenant-2 (Quincy Windsor-Clive) 0
20484 ANALOG_INPUT Clo_OC_48 Clothing index of occupant-48 of tenant-2 (Quincy Windsor-Clive) 0

5) Objects in the “VentilationController” device

 The formula for calculating the instance number is as follows:

 On/off state = 1000 × outdoor unit index + 100 × indoor unit index + 3.

 Enable bypass control = 1000 × outdoor unit index + 100 × indoor unit index + 4

 Fan speed = 1000 × outdoor unit index + 100 × indoor unit index + 5.

Inst.
No.

Type Name Description
Initial
value

1 ANALOG_INPUT CO2 level of south tenant CO2 level of south tenant. 400
2 ANALOG_INPUT CO2 level of north tenant CO2 level of north tenant. 400

1103 BINARY_OUTPUT On/Off setting/state (HEX1-1) This object is used to control or monitor On/Off state of HEX1-1 0
1104 BINARY_OUTPUT Bypass control setting/state (HEX1-1) This object is used to control or monitor bypass control state of HEX1-1 0
1105 MULTI_STATE_OUTPUT Fan speed (HEX1-1) This object is used to control or monitor fan speed of HEX1-1. 1:Low; 2:Middle; 3:High 3
1203 BINARY_OUTPUT On/Off setting/state (HEX1-2) This object is used to control or monitor On/Off state of HEX1-2 0
1204 BINARY_OUTPUT Bypass control setting/state (HEX1-2) This object is used to control or monitor bypass control state of HEX1-2 0
1205 MULTI_STATE_OUTPUT Fan speed (HEX1-2) This object is used to control or monitor fan speed of HEX1-2. 1:Low; 2:Middle; 3:High 3
1303 BINARY_OUTPUT On/Off setting/state (HEX1-3) This object is used to control or monitor On/Off state of HEX1-3 0
1304 BINARY_OUTPUT Bypass control setting/state (HEX1-3) This object is used to control or monitor bypass control state of HEX1-3 0
1305 MULTI_STATE_OUTPUT Fan speed (HEX1-3) This object is used to control or monitor fan speed of HEX1-3. 1:Low; 2:Middle; 3:High 3
1403 BINARY_OUTPUT On/Off setting/state (HEX1-4) This object is used to control or monitor On/Off state of HEX1-4 0
1404 BINARY_OUTPUT Bypass control setting/state (HEX1-4) This object is used to control or monitor bypass control state of HEX1-4 0
1405 MULTI_STATE_OUTPUT Fan speed (HEX1-4) This object is used to control or monitor fan speed of HEX1-4. 1:Low; 2:Middle; 3:High 3
1503 BINARY_OUTPUT On/Off setting/state (HEX1-5) This object is used to control or monitor On/Off state of HEX1-5 0

-A1-17-

1504 BINARY_OUTPUT Bypass control setting/state (HEX1-5) This object is used to control or monitor bypass control state of HEX1-5 0
1505 MULTI_STATE_OUTPUT Fan speed (HEX1-5) This object is used to control or monitor fan speed of HEX1-5. 1:Low; 2:Middle; 3:High 3
2103 BINARY_OUTPUT On/Off setting/state (HEX2-1) This object is used to control or monitor On/Off state of HEX2-1 0
2104 BINARY_OUTPUT Bypass control setting/state (HEX2-1) This object is used to control or monitor bypass control state of HEX2-1 0
2105 MULTI_STATE_OUTPUT Fan speed (HEX2-1) This object is used to control or monitor fan speed of HEX2-1. 1:Low; 2:Middle; 3:High 3
2203 BINARY_OUTPUT On/Off setting/state (HEX2-2) This object is used to control or monitor On/Off state of HEX2-2 0
2204 BINARY_OUTPUT Bypass control setting/state (HEX2-2) This object is used to control or monitor bypass control state of HEX2-2 0
2205 MULTI_STATE_OUTPUT Fan speed (HEX2-2) This object is used to control or monitor fan speed of HEX2-2. 1:Low; 2:Middle; 3:High 3
2303 BINARY_OUTPUT On/Off setting/state (HEX2-3) This object is used to control or monitor On/Off state of HEX2-3 0
2304 BINARY_OUTPUT Bypass control setting/state (HEX2-3) This object is used to control or monitor bypass control state of HEX2-3 0
2305 MULTI_STATE_OUTPUT Fan speed (HEX2-3) This object is used to control or monitor fan speed of HEX2-3. 1:Low; 2:Middle; 3:High 3
2403 BINARY_OUTPUT On/Off setting/state (HEX2-4) This object is used to control or monitor On/Off state of HEX2-4 0
2404 BINARY_OUTPUT Bypass control setting/state (HEX2-4) This object is used to control or monitor bypass control state of HEX2-4 0
2405 MULTI_STATE_OUTPUT Fan speed (HEX2-4) This object is used to control or monitor fan speed of HEX2-4. 1:Low; 2:Middle; 3:High 3
3103 BINARY_OUTPUT On/Off setting/state (HEX3-1) This object is used to control or monitor On/Off state of HEX3-1 0
3104 BINARY_OUTPUT Bypass control setting/state (HEX3-1) This object is used to control or monitor bypass control state of HEX3-1 0
3105 MULTI_STATE_OUTPUT Fan speed (HEX3-1) This object is used to control or monitor fan speed of HEX3-1. 1:Low; 2:Middle; 3:High 3
3203 BINARY_OUTPUT On/Off setting/state (HEX3-2) This object is used to control or monitor On/Off state of HEX3-2 0
3204 BINARY_OUTPUT Bypass control setting/state (HEX3-2) This object is used to control or monitor bypass control state of HEX3-2 0
3205 MULTI_STATE_OUTPUT Fan speed (HEX3-2) This object is used to control or monitor fan speed of HEX3-2. 1:Low; 2:Middle; 3:High 3
3303 BINARY_OUTPUT On/Off setting/state (HEX3-3) This object is used to control or monitor On/Off state of HEX3-3 0
3304 BINARY_OUTPUT Bypass control setting/state (HEX3-3) This object is used to control or monitor bypass control state of HEX3-3 0
3305 MULTI_STATE_OUTPUT Fan speed (HEX3-3) This object is used to control or monitor fan speed of HEX3-3. 1:Low; 2:Middle; 3:High 3
3403 BINARY_OUTPUT On/Off setting/state (HEX3-4) This object is used to control or monitor On/Off state of HEX3-4 0
3404 BINARY_OUTPUT Bypass control setting/state (HEX3-4) This object is used to control or monitor bypass control state of HEX3-4 0
3405 MULTI_STATE_OUTPUT Fan speed (HEX3-4) This object is used to control or monitor fan speed of HEX3-4. 1:Low; 2:Middle; 3:High 3
3503 BINARY_OUTPUT On/Off setting/state (HEX3-5) This object is used to control or monitor On/Off state of HEX3-5 0
3504 BINARY_OUTPUT Bypass control setting/state (HEX3-5) This object is used to control or monitor bypass control state of HEX3-5 0
3505 MULTI_STATE_OUTPUT Fan speed (HEX3-5) This object is used to control or monitor fan speed of HEX3-5. 1:Low; 2:Middle; 3:High 3
4103 BINARY_OUTPUT On/Off setting/state (HEX4-1) This object is used to control or monitor On/Off state of HEX4-1 0
4104 BINARY_OUTPUT Bypass control setting/state (HEX4-1) This object is used to control or monitor bypass control state of HEX4-1 0
4105 MULTI_STATE_OUTPUT Fan speed (HEX4-1) This object is used to control or monitor fan speed of HEX4-1. 1:Low; 2:Middle; 3:High 3
4203 BINARY_OUTPUT On/Off setting/state (HEX4-2) This object is used to control or monitor On/Off state of HEX4-2 0
4204 BINARY_OUTPUT Bypass control setting/state (HEX4-2) This object is used to control or monitor bypass control state of HEX4-2 0
4205 MULTI_STATE_OUTPUT Fan speed (HEX4-2) This object is used to control or monitor fan speed of HEX4-2. 1:Low; 2:Middle; 3:High 3
4303 BINARY_OUTPUT On/Off setting/state (HEX4-3) This object is used to control or monitor On/Off state of HEX4-3 0
4304 BINARY_OUTPUT Bypass control setting/state (HEX4-3) This object is used to control or monitor bypass control state of HEX4-3 0
4305 MULTI_STATE_OUTPUT Fan speed (HEX4-3) This object is used to control or monitor fan speed of HEX4-3. 1:Low; 2:Middle; 3:High 3
4403 BINARY_OUTPUT On/Off setting/state (HEX4-4) This object is used to control or monitor On/Off state of HEX4-4 0
4404 BINARY_OUTPUT Bypass control setting/state (HEX4-4) This object is used to control or monitor bypass control state of HEX4-4 0
4405 MULTI_STATE_OUTPUT Fan speed (HEX4-4) This object is used to control or monitor fan speed of HEX4-4. 1:Low; 2:Middle; 3:High 3

-A1-18-

6) Objects in the “DummyDevice”
Inst.
No.

Type Name Description
Initial
value

1 ANALOG_VALUE Analog value (int) Dummy object to test communication of analog value (int). 1
2 ANALOG_OUTPUT Analog output (int) Dummy object to test communication of analog output (int). 2
3 ANALOG_INPUT Analog input (int) Dummy object to test communication of analog input (int). 3
4 ANALOG_VALUE Analog value (float) Dummy object to test communication of analog value (real). 4
5 ANALOG_OUTPUT Analog output (float) Dummy object to test communication of analog output (real). 5
6 ANALOG_INPUT Analog input (float) Dummy object to test communication of analog input (real). 6
7 BINARY_VALUE Binary value Dummy object to test communication of binary value. 0
8 BINARY_OUTPUT Binary output Dummy object to test communication of binary output. 0
9 BINARY_INPUT Binary input Dummy object to test communication of binary input. 0

10 MULTI_STATE_VALUE Multistate value Dummy object to test communication of multistate value. 1
11 MULTI_STATE_OUTPUT Multistate output Dummy object to test communication of multistate output. 2
12 MULTI_STATE_INPUT Multistate input Dummy object to test communication of multistate input. 3
13 DATETIME_VALUE BACnet date time Dummy object to test communication of bacnet date time. 1980/6/14 0:00

Appendix 2

Occupants

-A2-1-

No Tenant Zone First name Last name Age Height Weight M/F
1 South S1 Dana Hattersley 45 160.9 69.4 F
2 South S1 Humphrey Lock 45 180.3 55.8 M
3 South S1 Cassie Harris 65 156.2 53.3 F
4 South S2 Cecil Topping 35 168.3 65.0 M
5 South S2 Laila Black 65 155.8 51.2 F
6 South S2 Clive Toolson 65 173.6 59.1 M
7 South S3 Monique Cartwright 25 159.3 50.2 F
8 South S3 Josiah Conder 55 170.0 72.0 M
9 South S3 Phil Barker 65 163.4 63.8 M

10 South S4 Meredith Baldridge 25 169.9 79.0 M
11 South S4 Angelica Roundell 35 164.0 51.3 F
12 South S4 Hermann Rietschel 35 172.3 66.2 M
13 South S4 Allyn Galbraith 45 172.0 66.2 M
14 South S5 Wallace Sabine 35 174.5 58.0 M
15 South S5 David Midwinter 45 165.2 77.2 M
16 South S5 Rowland Rouse 35 175.4 71.9 M
17 South S5 Yuichiro Iio 45 168.6 81.0 M
18 South S6 Zachariah Vernon 25 181.7 69.6 M
19 South S6 Allyn Lympany 65 149.0 58.2 F
20 South S7 Daiki Kobayashi 25 175.2 56.6 M
21 South S7 Yvonne Murrills 65 153.6 62.2 F
22 South S7 Vince Cok 55 162.8 66.6 M
23 South S7 Niccolo Giannetti 25 165.9 58.0 M
24 South S7 Elizabeth Roundell 65 153.0 62.4 F
25 South S7 Nicola Turnbull 45 160.3 61.6 F
26 South S8 Masahi Momota 55 156.5 67.3 M
27 South S8 Jade Mollison 65 153.7 64.0 F
28 South S8 Linus Hanley 45 160.9 77.5 M
29 South S8 Valentine Elliston 45 172.7 70.5 M
30 South S8 Roman Steele 45 173.4 68.8 M
31 South S8 Savannah Biggs 55 149.4 55.5 F
32 South S8 Howard Astley 25 173.5 72.0 M
33 South S8 Masato Miyata 35 179.6 64.4 M
34 South S9 Aileen Winder 45 153.8 60.6 F
35 South S9 Landon Ackroyd 25 173.2 49.9 M
36 South S9 Leo Quantrill 65 175.9 57.7 M
37 South S9 Eisuke Togashi 55 171.4 78.7 M
38 South S9 Wilhelmina Chalmers 35 160.5 57.0 F
39 North N1 Kim Collingwood 35 162.9 68.1 M
40 North N1 Takahiro Ueno 45 170.6 75.5 M
41 North N1 Kimberly Holder 25 157.5 44.1 F
42 North N1 Sophie Coffin 45 157.5 56.9 F
43 North N1 Rolla Carpenter 55 162.8 74.0 M
44 North N2 Pauline Gooding 35 164.5 48.0 F
45 North N2 Sei Nagashima 35 178.0 64.9 M
46 North N2 Louisa Street 45 156.7 40.3 F
47 North N2 Lindsay Buckler 25 157.1 46.9 F

No Tenant Zone First name Last name Age Height Weight M/F
48 North N2 Katsuyuki Edahiro 55 180.0 69.4 M
49 North N3 Carey Blanchfield 55 175.5 68.9 M
50 North N3 Cordelia Woodson 25 169.1 54.0 F
51 North N3 Theodore Place 35 172.7 70.7 M
52 North N4 Tomoya Katayama 45 171.3 67.1 M
53 North N4 Michaela Nutter 45 167.7 54.3 F
54 North N4 Hajime Ogata 65 158.1 69.7 M
55 North N4 Lewis Swaine 35 172.9 61.8 M
56 North N4 Valentine Wellington 45 170.7 73.6 M
57 North N4 Stephanie Hines 35 162.8 55.4 F
58 North N4 Leonard Hill 35 176.4 54.8 M
59 North N5 Hisao Ayame 35 180.8 67.0 M
60 North N5 Masanari Ukai 45 171.1 74.1 M
61 North N5 Pamela Stackhouse 45 164.6 53.4 F
62 North N5 William Trollope 35 179.1 35.1 M
63 North N5 Jasmine Flowers 65 160.4 44.1 F
64 North N5 Constantin Yaglou 35 164.2 73.1 M
65 North N5 Edwin Gwatkin 45 168.6 50.7 M
66 North N6 Jeff Northcutt 55 169.3 69.6 M
67 North N6 Pat Hightower 35 178.4 44.3 M
68 North N6 Brendon Byrd 25 170.5 71.0 M
69 North N6 Abel Cleverly 55 175.9 69.1 M
70 North N6 Daniel Calladine 35 167.9 66.2 M
71 North N7 Makoto Satoh 25 163.4 72.3 M
72 North N7 Walter Heston 35 176.1 80.4 M
73 North N7 Robin Hurst 25 177.7 60.6 M
74 North N7 Rick Dobbs 55 163.6 64.8 M
75 North N8 Oswald Coffin 45 168.7 59.0 M
76 North N8 Godfrey Doust 45 157.8 78.7 M
77 North N8 Hiroyuki Hatada 45 177.4 67.6 M
78 North N8 Lindsey Ottley 35 152.2 48.8 F
79 North N8 Malcolm Watt 35 167.6 74.0 M
70 North N8 Elton Vickers 45 179.8 64.3 M
81 North N8 Rodney Benge 35 169.4 69.9 M
82 North N9 Stanley Neilson 45 166.0 55.4 M
83 North N9 Willis Carrier 45 162.5 78.3 M
84 North N9 Emma Botting 45 165.5 51.0 F
85 North N9 Wanda Madgwick 35 150.4 48.6 F
86 North N9 Quincy Windsor-Clive 35 171.2 72.2 M

† Height, weight, and gender are just set for the fun of giving reality and do not affect

the calculation results.

